Diffractive optical neural networks (DONNs) have exhibited the advantages of parallelization, high speed, and low consumption. However, the existing DONNs based on free-space diffractive optical elements are bulky and unsteady. In this study, we propose a planar-waveguide integrated diffractive neural network chip architecture. The three diffractive layers are engraved on the same side of a quartz wafer. The three-layer chip is designed with 32-mm3 processing space and enables a computing speed of 3.1×109 Tera operations per second. The results show that the proposed chip achieves 73.4% experimental accuracy for the Modified National Institute of Standards and Technology database while showing the system’s robustness in a cycle test. The consistency of experiments is 88.6%, and the arithmetic mean standard deviation of the results is ~4.7%. The proposed chip architecture can potentially revolutionize high-resolution optical processing tasks with high robustness.
Actuators made of Giant Magnetostrictive Material (GMM) are used more and more widely in ultra-precision positioning, processing, measurement, and vibration isolation of equipment. While a single Giant Magnetostrictive Actuator (GMA) has low load capacity and non-ideal dynamic output characteristics, this paper presents a differential Giant Magnetostrictive Mitro-Displacement Actuator. The effect of the equivalent stiffness and quality of the load on the output characteristics of the actuator is analyzed by establishing the dynamic model of differential GMA. The experimental results show that compared to a single GMA micro-displacement actuator system, the differential GMA system has a positioning noise of ±3 nm, a resolution of 6 nm within a 18.5μm travel range. In the composite control system, a hysteresis-free sinusoidal displacement output with an amplitude of 3μm within 200 Hz is realized, and the maximum output error is 0.6μm, which effectively improves the dynamic performance of the actuator and improves the load capacity of the actuator.
Whether velocity sensor can accurately acquire payload vibration information has become the most important factor that restricts vibration isolation performance. In order to get accurate sensor parameters, DC excitation method is used to measure the central frequency, damping ratio and sensitivity of inertial velocity sensor. The influence of different currents on the measurement accuracy of sensors such as response voltage, central frequency, damping ratio and sensitivity is analyzed, and the optimal current value is determined, which provides a powerful guarantee for obtaining accurate sensor parameters. Finally, the GS-11D sensor is used to carry out the experiment. The experimental results show that the relative error of the central frequency, damping ratio and sensitivity of the DC excitation method can meet the application requirements.
A method to measure the magnetic field inside the Giant Magnetostrictive Actuator (GMA) is proposed. Improved Preisach Model is applied to eliminate the unavoidable nonlinearity error in the measurement. The effect of temperature on measurement can be eliminated by double Fiber Bragg Grating (FBG) structure. The double-sagnac loop combined with Polarization Maintaining Fiber (PMF) is used to demodulate the center wavelength. Sensing model of the FBG is established to realize temperature compensation for the measurement system. Experiment results show that resolution of 2.1×10-4 T can be achieved over a range of 127 mT, and the repeatability of overall measurement is 0.227%. Therefore, the proposed method can be used to measure the internal magnetic field of GMA effectively and reliably.
The measurement of spindle radial error motion is achieved based on target trajectory tracking (TTT). Error analysis of TTT method is performed in this paper. Target trajectory doesn’t contain information about axial error motion. The tilt error motion is included in the target trajectory. However, the tilt error motion is small enough to be ignored. The roundness error of the target trajectory is assessed to obtain the radial error motion of the spindle. The experimental results confirm that the proposed method can be applied to measure the radial error motion of a high-speed spindle having a maximum rotational speed of 6000r/m.
A displacement measuring system based on grating double diffraction is proposed in this paper to eliminate the impact of multiple reflections of the zero-order diffraction beam and to reduce the stray light coming from the interference field. The principle of the proposed system is that with the proper interference of the first order beam of second diffraction, a displacement transducer can be obtained via the Doppler frequency shift and phase decoding. Simulation tests are conducted using LightTools model to prove the effectiveness of the proposed system. And experiment results shows that a resolution of 20 nm can be achieved over a range of 25 mm. It is therefore concluded that the proposed system can be used to improve the measurement resolution and accuracy.
A performance analysis and experiment validation of a pneumatic vibration isolator (PVI) that applied in the wafer stage of lithography is proposed in this work. The wafer stage of lithography is a dual-stage actuator system, including a long-stroke stage (LS) and a short-stroke stage (SS). In order to achieve the nanometer level positioning the isolator is designed to reduce the transmission of LS excitations to SS. In addition, considering the SS with six degrees of freedom and required to keep a strict constant temperature environment, the isolator need to have two functions, including the decoupling for vertical to horizontal and gravity compensation. In this isolator, a biaxial hinge was designed to decouple vertical rotation freedom, and a gas bearing was designed to decouple horizontal motion. The stiffness and damping of the pneumatic vibration isolator were analyzed. Besides, an analysis of the natural frequency and vibration transmissibility of the isolator is presented. In the end, the results show that vibration transmission is reduced significantly by the isolator and natural frequency can be lower than 0.6 Hz. This means that experimental results accord with the prediction model.
A two pendulums driven spherical robot is designed for pipe inspection tasks in this paper and a circular trajectory motion control method is proposed. Compared with the traditional pendulum driven spherical robot, the improved two pendulums drive unit offers novel motion principle of circular trajectory motion which is studied by force analysis. Considering the motion characters, the circular trajectory motion is decomposed into forward roll and lateral roll, and the dynamics model is built based on the theorem of moment of momentum. In order to acquire the controllable velocity and radius of circular trajectory motion, a circular trajectory motion control strategy is proposed, by which the motion of one pendulum is planned according to the sine function to control the angle between the outer shell of the robot and the ground, and the motion of the other pendulum is controlled by position servo control to maintain the forward velocity of the robot. The controller of circular trajectory motion is designed for accurate tracking of the tile angle of the two pendulums, and the control strategy is validated by both numerical simulation and prototype experiment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.