We present the optical and electrical properties of AlN-based and 12% doped ScAlN-based pyroelectric detectors fabricated on 8-inch wafers respectively. Both AlN and ScAlN materials are deposited at a temperature of ~200oC, making them potential candidates for CMOS compatible MEMS pyroelectric detectors. FTIR spectroscopy is used to measure the absorption of these pyroelectric detectors over the wavelength range of ~2–14 μm and the results show absorption improvement up to ~75% for ScAlN-based pyroelectric detectors compared to that of AlN-based pyroelectric detectors at the wavelength of 4.26 μm where CO2 gas absorption of IR radiation is anticipated. Higher output current (~3-fold increase) is also observed from ScAlN-based pyroelectric detectors. Other than pyroelectric coefficient that contributes to improved performance for ScAlN-based pyroelectric detectors, we believe that absorptivity of the device also plays a major role in the performance of pyroelectric IR detectors. The results obtained from the study of the electrical and optical properties of AlN-based and ScAlN-based CMOS compatible MEMS pyroelectric detectors will bring forth potential applications of these detectors onto multi-functional integrable and monolithic platforms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.