Altered retinal neurovascular coupling may contribute to the development and progression of diabetic retinopathy (DR) but remains highly challenging to measure. Here, we present a novel modality of functional OCT angiography (fOCTA) that allows a 3D imaging of retinal functional hyperemia across the entire vascular tree with single-capillary resolution. The high-resolution fOCTA revealed that the retinal capillaries exhibited apparent hyperemic response in normal mice and significant functional hyperemia loss at an early stage of DR and visible restoration after aminoguanidine treatment. The proposed retinal fOCTA would provide new insights into the pathophysiology, screening, and treatment of early DR.
Dynamic OCT angiography (OCTA) is an attractive approach for monitoring stimulus-evoked hemodynamics; however, a large dataset poses a great challenge to data processing. This study proposed a GPU-based real-time data processing pipeline for dynamic inverse SNR-decorrelation OCTA (ID-OCTA) with line-process rate of 133 kHz. Real-time processing enabled automatic optimization of angiogram quality, which improved the vessel SNR, contrast-to-noise ratio, and connectivity by 14.37, 14.08, and 9.76%, respectively. Furthermore, dynamic angiographic imaging of stimulus-evoked hemodynamics was achieved within a single trail in the mouse retina. Therefore, GPU ID-OCTA enables real-time and high-quality angiographic imaging and is particularly suitable for hemodynamic studies.
We investigated the correlation of the blood optical attenuation coefficient (OAC) and the blood glucose concentration (BGC). The blood OAC was measured in mouse retina in vivo through OCT angiography (OCTA). The arteries and veins presented a blood OAC change of ~0.05-0.07 mm-1 per 10 mg/dl and a significant elevation of blood OAC in diabetic mice was observed. Besides, the veins had a higher correlation coefficient between the measured blood OAC and BGC than that of the arteries. The blood OAC-BGC correlation suggests a concept of non-invasive OCTA-based glucometry, allowing a fast assessment of the blood glucose of specific vessels.
Complex decorrelation-based OCT angiography (OCTA) has the potential for quantitively monitoring hemodynamic activities. To improve the dynamic range and uncertainty for quantification, an adaptive spatial-temporal (ST) kernel was proposed. The ensemble size in decorrelation computation was enlarged by collecting samples in the spatial/ temporal dimensions. The spatial sub-kernel size was adaptively changed to suppress the bulk motion influence by solving a maximum entropy model. The improvement of dynamic range and uncertainty were validated by theoretical analyzation, numerical simulation, and in vitro/ in vivo experiments. Furthermore, proved by the in vivo experiments, the adaptive ST-kernel can also improve the separability between different stimuli and allow a reliable temporal analysis of the hemodynamic response.
Significance: Current approaches to stimulating and recording from the brain have combined electrical or optogenetic stimulation with recording approaches, such as two-photon, electrophysiology (EP), and optical intrinsic signal imaging (OISI). However, we lack a label-free, all-optical approach with high spatial and temporal resolution.
Aim: To develop a label-free, all-optical method that simultaneously manipulates and images brain function using pulsed near-infrared light (INS) and functional optical coherence tomography (fOCT), respectively.
Approach: We built a coregistered INS, fOCT, and OISI system. OISI and EP recordings were employed to validate the fOCT signals.
Results: The fOCT signal was reliable and regional, and the area of fOCT signal corresponded with the INS-activated region. The fOCT signal was in synchrony with the INS onset time with a delay of ∼30 ms. The magnitude of fOCT signal exhibited a linear correlation with the INS radiant exposure. The significant correlation between the fOCT signal and INS was further supported by OISI and EP recordings.
Conclusions: The proposed fiber-based, all-optical INS-fOCT method allows simultaneous stimulation and mapping without the risk of interchannel cross-talk and the requirement of contrast injection and viral transfection and offers a deep penetration depth and high resolution.
The brain experiences alterations including cerebral ischemia and tissue damage after focal ischemic stroke. A thorough understanding of the spatiotemporal dynamics of blood perfusion and tissue damage is of great importance in stroke research. In chronic rat photothrombotic (PT) stroke model, a parallel study of both vascular and cellular responses to regional ischemia was performed with optical coherence tomography (OCT) in a label-free and depth-resolved manner. OCT revealed that vessels of different types and depth presented various spatial and temporal dynamics. In the ischemic core area, the distal middle cerebral arteries (dMCAs) were blocked gradually with laser irradiation and a spontaneous recanalization was observed at Day 5. In the chronic recovery period, the blocked small pial microvessels presented an apparent neovascularization progressing from the peripheral into the core area, with the final blood flow volume exceeding the baseline before PT. While the cortical capillary perfusion of the core area totally disappeared at Day 3 after PT and never recovered in the core area till the end of observation. The results demonstrated that blood reperfusion mainly occurred in the dMCAs vessels and pial microvessels of the superficial layer, but not in capillaries located deep in the cortex. The response of the cellular scattering and tissue damage showed a high spatial and temporal correlation with the capillary perfusion. On the whole, ischemic area and lesion area from attenuation coefficient are not exactly the same but complentary, with great help in understanding stroke mechanism comprehensively.
KEYWORDS: Optical coherence tomography, Angiography, Image resolution, Tissues, Brain, Medical imaging, Imaging systems, In vivo imaging, Visualization, 3D image processing
Optical coherence tomography angiography (OCTA) is a promising imaging modality that enables an in vivo label-free, high-resolution and high-contrast visualization of three-dimensional biological microvasculature. The blood flow contrast in OCTA is achieved by mathematically distinguishing the dynamic flow from the static surrounding tissue. However, the residual surrounding tissue remains as the background in the angiogram, which severely hinders the interpretation and quantification of the angiographic outcomes. The current temporal, wavelength, angular and spatial averaging approaches have been employed to enhance the flow contrast by trading imaging time and resolution for multiple independent measurements. Our study has further demonstrated that these averaging approaches are equivalent in principle, offering almost the same flow contrast improvement as the number of averages increases. Given a sufficient number, an ideal flow contrast can be achieved, while the cost of imaging time or resolution is unaffordable for any individual averaging approach alone. Thus, we have proposed a hybrid averaging strategy for a desired flow contrast by cost apportionment. It is demonstrated that, compared with any individual approach, hybrid averaging is able to offer a desired flow contrast without severe degradation of imaging time and resolution. In addition, making use of the extended range of a VCSEL based swept source OCT, an angular averaging approach by path length encoding is also demonstrated for flow contrast enhancement. This study is beneficial to providing useful guidance for the design of OCTA and facilitating the interpretation of OCT angiograms in clinical applications.
Optical coherence tomography angiography (OCTA) is a promising imaging modality that enables a label-free, high-resolution and high-contrast image of biological tissue microvasculature. Typically, the blood flow contrast is implemented by mathematically analyzing the temporal dynamics of light scattering, and setting a threshold to distinguish the dynamic blood flow from the static tissue bed. However, high flow contrast is degraded by the residual overlap that results in misclassification errors between dynamic and static signals. Our study has demonstrated that flow contrast can be enhanced using a single-shot angular compounded OCTA (AC-OCTA). Because a continuous modulation is induced by the offset that the probing beam is away from the beam center in the typical OCT sample arm, different incidence angles in the probing beam are encoded in B-scan modulation frequencies. The complex-valued spectral interferogram is reconstructed by removing the conjugate terms in the depth space and its Fourier transform along the transversal fast-scan direction generates a wide conjugate-free B-scan modulation spectrum in the full space of the spatial domain. By splitting the modulation spectrum, angle-resolved independent sub-angiograms are generated and then compounded to enhance the flow contrast. Both flow phantom and in vivo animal cerebral vascular imaging demonstrated that the proposed angular compounded OCTA can offer a ~50% decrease of misclassification errors and an improved flow contrast and vessel connectivity. This AC-OCTA is beneficial to facilitating the interpretation of OCT angiograms in clinical applications.
We describe an angular compounding method by full-channel B-scan modulation encoding for speckle reduction in optical coherence tomography. The complex-valued spectral interferogram (SI) is reconstructed by removing one of the conjugate terms in the depth space. Fourier transform of the complex SI along the lateral direction enables a full-channel (with both negative and positive Fourier space) for B-scan modulation in the spatial frequency (ν) domain. A full-size probe beam, determined by the scanning mirror size, is centered on the mirror pivot, which allows the negative and positive half-channels working in parallel. Compared with the existing method, where only a half-channel (negative or positive) works alone, the proposed full-channel method offers more than twice the performance in speckle reduction. The feasibility of the proposed full-space approach is validated through both the phantom and in vivo human thumbnail experiments.
Tissue optical clearing (TOC) is helpful for reducing scattering and enhancing the penetration depth of light, and shows promising potential in optimizing optical imaging performances. A mixture of fructose with PEG-400 and thiazone (FPT) is used as an optical clearing agent in mouse dorsal skin and evaluated with OCT angiography (Angio-OCT) by quantifying optical properties and blood flow imaging simultaneously. It is observed that FPT leads to an improved imaging performance for the deeper tissues. The imaging performance improvement is most likely caused by the FPT-induced dehydration of skin, and the reduction of scattering coefficient (more than ∼40.5%) and refractive-index mismatching (more than ∼25.3%) in the superficial (epidermal, dermal, and hypodermal) layers. A high correlation (up to ∼90%) between the relative changes in refractive-index mismatching and Angio-OCT signal strength is measured. The optical clearing rate is ∼5.83×10−5 cm/s. In addition, Angio-OCT demonstrates enhanced performance in imaging cutaneous hemodynamics with satisfactory spatiotemporal resolution and contrast when combined with TOC, which exhibits a powerful practical application in studying microcirculation.
Optical coherence tomography angiography (Angio-OCT), mainly based on the temporal dynamics of OCT scattering signals, has found a range of potential applications in clinical and scientific research. Based on the model of random phasor sums, temporal statistics of the complex-valued OCT signals are mathematically described. Statistical distributions of the amplitude differential and complex differential Angio-OCT signals are derived. The theories are validated through the flow phantom and live animal experiments. Using the model developed, the origin of the motion contrast in Angio-OCT is mathematically explained, and the implications in the improvement of motion contrast are further discussed, including threshold determination and its residual classification error, averaging method, and scanning protocol. The proposed mathematical model of Angio-OCT signals can aid in the optimal design of the system and associated algorithms.
KEYWORDS: Optical coherence tomography, Cornea, Visualization, Eye, In vivo imaging, Tissues, Image segmentation, Lithium, Crystals, Signal to noise ratio
We report on a phase-based method for accurately measuring the ocular pulse in the anterior chamber in vivo. Using phase-sensitive optical coherence tomography with optimized scanning protocols and equations for compensating bulk motion and environmental vibrations, a high sensitivity of 0.9 μm/s minimal velocity is demonstrated at a wide detection band of 0 to 380 Hz. The pulsatile relative motion between cornea and crystalline lens in rodents is visualized and quantified. The relative motion is most likely caused by respiration (1.6 Hz) and heartbeat (6.6 Hz). The velocity amplitude of the relative motion is 10.3±2.4 μm/s. The displacement amplitudes at the respiratory and cardiac frequencies are 202.5±64.9 and 179.9±49.4 nm, respectively. The potential applications of the measurement technique can be found in the evaluation of intraocular pressure and the measurement of biomechanical properties of the ocular tissue, which are important in several ocular diseases.
During the cardiac development, the cardiac wall and the blood flow actively interact with each other, and determine the biomechanical environment to which the embryonic heart exposes. Employing an ultrafast 1310nm-band dual-camera spectral domain optical coherence tomography (SDOCT), the radial strain rate of the myocardial wall can be extracted with high signal-to-noise ratio, at the same time the Doppler velocity of the blood flow can also be displayed. The ability to simultaneously characterize these two cardiac tissues
provides a powerful approach to better understand the interaction between the cardiac wall and the blood
flow, which is important to the investigation of cardiac development.
Purpose. It is suspected that the abnormalities of aqueous outflow pump composed of trabecular meshwork (TM) and Schlemm’s canal (SC) results in the increased outflow resistance and then elevated intraocular pressure (IOP) in initial glaucoma. In order to explore the casual mechanism and the early diagnosis of glaucoma, the dynamic characterizations of aqueous outflow pump were explored.
Methods. As a functional extension of optical coherence tomography (OCT), tissue Doppler OCT (tissue-DOCT) method capable of measuring the slow tissue movement was developed. The tissue-DOCT imaging was conducted on the corneo-scleral limbus of 4 monkey eyes. The eye was mounted in an anterior segment holder, together with a perfusion system to control the mean IOP and to induce the cyclic IOP transients with amplitude 3 mm Hg at frequency 1 pulse/second. IOP was monitored on-line by a pressure transducer. Tissue-DOCT data and pressure data were recorded simultaneously. The IOP-transient induced Doppler velocity, displacement and strain rate of TM and the normalized area of SC were quantified at 7 different mean IOPs (5, 8, 10, 20, 30, 40, 50 mm Hg).
Results. The outflow system, including TM, SC and CCs, was visualized in the micro-structural imaging. The IOP-transient induced pulsatile TM movement and SC deformation were detected and quantified by tissue-DOCT. The TM movement was depth-dependent and the largest movement was located in the area closest to SC endothelium (SCE). Both the pulsations of TM and SC were found to be synchronous with the IOP pulse wave. At 8 mm Hg IOP, the global TM movement was around 0.65μm during one IOP transient. As IOP elevated, a gradual attenuation of TM movement and SC deformation was observed.
Conclusions. The observed pulsation of TM and SC induced by the pulsatile IOP transients was in good agreement with the predicated role of TM and SC acting as a biomechanical pump (pumping aqueous from anterior chamber into SC and from SC into CCs) in the aqueous outflow system. As the IOP elevated, the attenuated pulsation amplitude of the aqueous outflow pump indicated the failure of the mechanical pump and the increase of aqueous outflow resistance. The promising results revealed the potential of using the proposed tissue-DOCT for diagnosis and associated therapeutic guidance of the initial and progressive glaucoma process by monitoring the pulsation of the outflow pump.
We demonstrate a 1050-nm spectral domain optical coherence tomography (OCT) system with a 12 mm imaging depth in air, a 120 kHz A-scan rate and a 10 μm axial resolution for anterior-segment imaging of human eye, in which a new prototype InGaAs linescan camera with 2048 active-pixel photodiodes is employed to record OCT spectral interferograms in parallel. Combined with the full-range complex technique, we show that the system delivers comparable imaging performance to that of a swept-source OCT with similar system specifications.
Knowledge of the biomechanical/elastic property of the cardiac wall is of fundamental importance in improving our understanding of cardiac development, particularly the interaction between the wall dynamics and hemodynamics in the developing outflow tract (OFT). We describe a method that employs optical coherence tomography (OCT) as a means to noninvasively measure the local elastic property of the cardiac wall in vivo. The method uses a time-lapse sequence of OCT images that represent the dynamic behavior of the OFT longitudinal section to calculate the regional wall pulse wave velocity (PWV), upon which the Young's modulus of the cardiac wall is deduced by the use of the Moens-Korteweg equation. The experimental results show that the foot-to-foot PWV ranges from 3.2 to 6.6 mm/s with a mean of 4.7 mm/s, and the averaged Young's modulus is 0.36 Pa, both of which are comparable to the documented values of stage HH17 atrioventricular canal tissue. The proposed method that provides the quantitative mechanical assessment may play a significant role in the understanding of the cardiac development.
During cardiac development, the cardiac wall and flowing blood are two important cardiac tissues that constantly interact with each other. This dynamic interaction defines appropriate biomechanical environment to which the embryonic heart is exposed. Quantitative assessment of the dynamic parameters of wall tissues and blood flow is required to further our understanding of cardiac development. We report the use of an ultrafast 1310-nm dual-camera spectral domain optical coherence tomography (SDOCT) system to characterize/image, in parallel, the dynamic radial strain rate of the myocardial wall and the Doppler velocity of the underlying flowing blood within an in vivo beating chick embryo. The OCT system operates at 184-kHz line scan rate, providing the flexibility of imaging the fast blood flow and the slow tissue deformation within one scan. The ability to simultaneously characterize tissue motion and blood flow provides a useful approach to better understand cardiac dynamics during early developmental stages.
Glaucoma is a blinding disease for which intraocular pressure (IOP) is the only treatable risk factor. The mean IOP is regulated through the aqueous outflow system, which contains the trabecular meshwork (TM). Considerable evidence indicates that trabecular tissue movement regulates the aqueous outflow and becomes abnormal during glaucoma; however, such motion has thus far escaped detection. The purpose of this study is to describe anovel use of a phase-sensitive optical coherence tomography (PhS-OCT) method to assess pulse-dependent TM movement. For this study, we used enucleated monkey eyes, each mounted in an anterior segment holder. A perfusion system was used to control the mean IOP as well as to provide IOP sinusoidal transients (amplitude 3 mmHg, frequency 1 pulse/second) in all experiments. Measurements were carried out at seven graded mean IOPs (5, 8, 10, 20, 30, 40, and 50 mm Hg). We demonstrate that PhS-OCT is sensitive enough to image/visualize TM movement synchronous with the pulse-induced IOP transients, providing quantitative measurements of dynamic parameters such as velocity, displacement, and strain rate that are important for assessing the biomechanical compliance of the TM. We find that the largest TM displacement is in the area closest to Schlemm's canal (SC) endothelium. While maintaining constant ocular pulse amplitude, an increase of mean IOP results in a decrease of TM displacement and mean size of the SC. These results demonstrate that the PhS-OCT is a useful imaging technique capable of assessing functional properties necessary to maintain IOP in a healthy range, offering a new diagnostic alternative for glaucoma.
In vivo imaging of microcirculation can improve our fundamental understanding of cerebral microhemodynamics under various physiological challenges, such as hypoxia and hyperoxia. However, existing techniques often involve the use of invasive procedures or exogenous contrast agents, which would inevitably perturb the intrinsic physiologic responses of microcirculation being investigated. We report ultrahigh sensitive optical microangiography (OMAG) for label-free monitoring of microcirculation responses challenged by oxygen inhalation. For the first time, we demonstrate that OMAG is capable of showing the impact of acute hypoxia and hyperoxia on microhemodynamic activities, including the passive and active modulation of microvascular density and flux regulation, within capillary and noncapillary vessels in rodents in vivo. The ability of OMAG to functionally image the intact microcirculation promises future applications for studying cerebral diseases.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.