In order to measure the coordinate of moving target, the laser tracking system for moving target was proposed, in which the receiver of four-quadrant APD was adopted as the detector and the DC motor was used to drive the reflector to move in two dimensions. The principle of the measurement system was analyzed first. Then the main part of the system was introduced. The tracking experiment showed that, this system could realized the function of automatic tracking and measuring the coordinate of moving target according to the pulsed laser ranging and angle sensors.
The stabilization and tracking line-of-sight with high accuracy is the chief specification and key function of the optic-electronic sight stabilization platform and it has an effect on the performance of loading equipment. The high-speed target is tracked with the shipboard azimuth and pitch optoelectronic platform. The compound-axis tracking servo control technique , the stabilization mirror system and the methods that compensates the azimuth by the rolling angle rate of motion carrier are used. The practice shows that the shipboard azimuth and pitch opto-electronic platform can realize high tracking precision.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.