As device geometries shrink, the lithography solutions to satisfy production requirements for a manufacturable process window often includes Optical Proximity Correction (OPC). OPC is sensitive to many process parameters, one of the most important is the illumination condition, this implicitly includes the lens NA and illuminator NA that generate the partial coherence factor σ, of the scanner. In a production context, the same performance is required for the product using several exposure tools but only one OPC scheme; this requires that the illumination conditions between scanners are matched. This verification has to be done not only for tools of the same generation, but the more complex case between tools of different generations. For the gate layer, an important requirement is the Across Chip Linewidth Variation (ACLV) that ensures transistors performance whatever the pitch. This requirement is mainly driven by Nested-Iso Bias. The paper will present the work completed on the gate layer in order to match the illumination conditions between scanners of the same generation and also between two scanners of different generations: one offers 0.68NA and a maximum σ of 0.75, the other has a maximum NA of 0.82 and maximum σ of 0.9. For scanners of the same generation, the matching was done by simply measuring the illumination NA of the tools, and for this a pinhole test was used. The matching was verified after litho by measuring Nested-Iso bias, and then on product using electrical CD measurement. For the "generation matching", two parameters are needed to define the illumination conditions: lens NA and illuminator NA. In this case, Nested-Iso bias is insufficient to identify the matching conditions as several combinations of lens and illuminator NA lead to the same Nested-Iso bias. Instead the OPC was checked on proximity curves generated for line end shortening and SRAM cells. The best matching conditions were then optimised using a simulation tool with the final check completed on product using electrical CD measurement.
Historically the primary methods used to achieve the industries ever-tightening resolution requirements were reduction of exposure wavelength and increased projection lens NA. Today however, photo engineers are pushing optical lithography well beyond the realm of what was once considered practical. Specific scanner exposure tool features have to be implemented to achieve the aggressive imaging objectives. One such example is to use focus drilling to expand the depth of focus for contact layers. This paper describes the implementation of focus drilling through the Continuous DOF expansion Procedure (CDP). In CDP, the wafer is tilted along the scanning direction, while the wafer stage continuously moves upward or downward during exposure. CDP technology provides an enhanced process window with initial data showing a 30% improvement in DOF for 250-nm contact holes. It also eliminates the need for double exposures and therefore maintains high throughput, comparable to standard wafer exposure.
KEYWORDS: Semiconducting wafers, Temperature metrology, Process control, Chemical elements, Lithography, Wafer testing, Robotics, Sensors, Data communications, Critical dimension metrology
To run the various steps of the process, multiple robot arm transfers within the Hot and Cold Plate modules which directly influence the critical dimension of the production wafers were performed on the lithography track. Wafer positioning inside these modules was found to be one of the key parameters to obtain the best critical dimensional uniformity across the wafer. With the currently realized track monitoring and conventional Statistical Process Control (SPC), potential process drifts or errors within these modules can only be detected from wafers measured during the post process control of product parameters. To catch all potential non-conformal production wafers directly at the tool, minimize equipment downtime and identify the root cause of maintenance issues, the real-time control of tool and process parameters is required. This paper presents the results of the evaluation of an Advanced Process Control (APC) solution used to detect in real-time mode any wafer positioning issues within the Hot and Cold Plate modules of a lithography track based on the monitoring of the plate temperature profile during wafer processing. After an explanation of the methodology used to collect the data from the tool, an initial phase of analysis of the temperature profile of the different Hot Plate modules was carried out. The monitoring of the temperature range was identified as the key parameter for the detection of wafer positioning issues where the temperature profile depends on the number of resistive heating elements, temperature settings and process conditions of the Hot Plate. The wafer tilt was simulated to compare the temperature profile to standard process conditions and in turn determine the detection capability. For the Cold Plate module, it was necessary to know the time between the end of the hot step and the start of the following cold step in order to detect a real tilt issue.
As device dimensions shrink the number of parameters influencing CD increases (PEB dispersion, development uniformity, resist thickness, BARC thickness, +/- scan focus control, scanner focus control at edge of the wafer...). Separation between all these contributors is not easy using only CD-SEM measurement, and particularly with isolated lines. For high volume manufacturing (where "time is money") and in the case of litho cluster drift, a quick and accurate diagnostic capability is an advantage for minimizing tool unavailability. An important attribute of this diagnostic capability is that its implementation is on standard production wafers. The use of production wafers enables continuous monitoring and also allows a direct correlation between monitoring measurements and the impact on product.
The technology that enables this type of diagnostic capability makes use of a compact dual tone line-end-shortening based target. A key benefit to this technology is that it provides a separation of the dose and focus parameters, which leads to quicker route cause determination.
After building a calibration model and determining minimum dose and focus sensitivity, both short term and long term stability of the model is investigated. The impact of wafer topology on model prediction is also investigated in order to assess on-product monitoring capability. The main error contributors are then identified for both track and scanner and the impact on CD control is evaluated. These cluster error contributors are then varied, first separately, and then combined. Measurement results are compared to the input parameters in order to determine error detection ability, measurement accuracy and separation capability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.