Dimensional characterization of microfluidic circuits were performed using three-dimensional models constructed from OCT images of such circuits. Were fabricated microchannels on the same BK7 glass plate, under different laser ablation conditions and substrate displacement velocity in relation to laser beam. Were used the following combination of energy, from 30 μJ to 60 μJ and velocity from 588 mm/min to 1176 mm/min, at 1 kHz laser repetition rate and 40 fs of pulse duration (FWHM). For OCT imaging we used an OCP930SR (Thorlabs System Inc) with 930 nm central wavelength, 6 μm of lateral and axial resolution, and image of 500 x 512 pixel corresponding to 2.0 mm x 1.6 mm of lateral and axial scans respectively at 8 frames per second. We also characterized devices like, micropumps, microvalves and microreactors. It was possible register the micropumps and valves in action in real time. Using the OCT images analyses was possible to select the best combination of laser pulse energy and substrate velocity. All the devices were made in raster protocol, where laser beam pass through the same path in a controlled number of times, and with each iteration more material is removed and deeper the channels remain. We found a deformation at the edge of fabricated structures, due to velocity reduction of substrate in relation to laser beam, which causes more laser pulses superposition in these regions, and more material is ablated. The technique was thus evaluated as a potential tool to aid in the inspection of microchannels.
The backscattered light originated when machining with femtosecond laser pulses can be used to accurately measure the processed surface position through an interferometer, as recently demonstrated by our group, in a setup that uses the same laser beam for ablation and inspection. The present work explores the characteristics of the laser light reflected by the target and its interaction with the resulting plasma to better understand its propagation physics and to improve the dynamic focusing system. The origin of this returning radiation was studied and has been traced, mainly, from the peripheral area of the focal spot (doughnut-like). By means of a Mach-Zehnder setup, the interferometric pattern was measured and analyzed aiming to access the influences of the plasma on the laser beam properties, and therefore on the retrieved information. Finally, the wavefront of the laser that creates and propagates through the plasma was characterized using a Shack-Hartmann sensor.
Taking advantage of the inherent characteristics of femtosecond laser used for machining, we developed an interferometric system able to evaluate and correct the focal position with an accuracy of a few microns, implementing a technique based on low coherence interferometry. This approach measures at the exact spot that the laser is machining, in real time, and is sensitive to any sample that acts as a scatterer to the wavelength in use. The experimental evaluation was divided in two steps: in the first a system based on a superluminescent LED was mounted to check the viability and develop the controlling software; in the second part a setup was mounted employing a femtosecond laser, and several kinds of samples using the active focus control, among which the results obtained with glass sample and a bovine tooth are meticulously described in this paper. The system was able to improve the performance in both samples, keeping them in the confocal region for an extended positioning range, resulting in better engraving by the laser.
KEYWORDS: Glucose, Blood, Optical coherence tomography, Signal attenuation, Magnesium, In vitro testing, Statistical analysis, In vivo imaging, Data modeling, Multiple scattering
As diabetes causes millions of deaths worldwide every year, new methods for blood glucose monitoring are in demand. Noninvasive approaches may increase patient adherence to treatment while reducing costs, and optical coherence tomography (OCT) may be a feasible alternative to current invasive diagnostics. This study presents two methods for blood sugar monitoring with OCT in vitro. The first, based on spatial statistics, exploits changes in the light total attenuation coefficient caused by different concentrations of glucose in the sample using a 930-nm commercial OCT system. The second, based on temporal analysis, calculates differences in the decorrelation time of the speckle pattern in the OCT signal due to blood viscosity variations with the addition of glucose with data acquired by a custom built Swept Source 1325-nm OCT system. Samples consisted of heparinized mouse blood, phosphate buffer saline, and glucose. Additionally, further samples were prepared by diluting mouse blood with isotonic saline solution to verify the effect of higher multiple scattering components on the ability of the methods to differentiate glucose levels. Our results suggest a direct relationship between glucose concentration and both decorrelation rate and attenuation coefficient, with our systems being able to detect changes of 65 mg/dL in glucose concentration.
KEYWORDS: Optical coherence tomography, Glucose, Signal attenuation, In vitro testing, Interferometry, Diagnostics, Blood, Statistical analysis, Radar, Analytical research, Data modeling, Chemical vapor deposition, Refractive index
Development of non-invasive techniques for glucose monitoring is crucial to improve glucose control and treatment
adherence in patients with diabetes. Hereafter, Optical Coherence Tomography (OCT) may offer a good alternative for
portable glucometers, since it uses light to probe samples. Changes in the object of interest can alter the intensity of light
returning from the sample and, through it, one can estimate the sample's attenuation coefficient (μt) of light. In this work,
we aimed to explore the behavior of μt of mouse's blood under increasing glucose concentrations. Different samples
were prepared in four glucose concentrations using a mixture of heparinized blood, phosphate buffer saline and glucose.
Blood glucose concentrations were measured with a blood glucometer, for reference. We have also prepared other
samples diluting the blood in isotonic saline solution to check the effect of a higher multiple-scattering component on the
ability of the technique to differentiate glucose levels based on μt. The OCT system used was a commercial Spectral
Radar OCT with 930 nm central wavelength and spectral bandwidth (FWHM) of 100 nm. The system proved to be
sensitive for all blood glucose concentrations tested, with good correlations with the obtained attenuation coefficients. A
linear tendency was observed, with an increase in attenuation with higher values of glucose. Statistical difference was
observed between all groups (p<0.001). This work opens the possibility towards a non-invasive diagnostic modality
using OCT for glycemic control, which eliminates the use of analytes and/or test strips, as in the case with commercially
available glucometers.
Optical properties of the biological tissue play an important role to a correct use of optical techniques for therapy and diagnosis. The mice skin presents morphological differences due to characteristics such as gender, body mass and age. Murine models are frequently used in pre-clinical trials in optical therapy and diagnosis. Therefore, the assessment of the skin tissue in animal models is needed for a proper understanding of how light interacts with skin. Noninvasive techniques such as optical coherence tomography (OCT) have been used to obtain optical information of the tissue, as the attenuation coefficient, with the advantage of obtaining sectional images in real time. In this study, eight female BALB/c albino mice (twenty-four weeks old) and eight male C57BL/6 black mice (eight weeks old) were used to measure the attenuation coefficient of the light in the skin, utilizing the OCT technique, aiming to check for influence of the aging process. Two moments were assessed twenty-two weeks apart from each other. Our data show that the aging process significantly affects the light attenuation coefficient in mice skin. Twenty-two weeks after, statistical significant differences were observed between groups within a same strain. We conclude that light attenuation coefficient of mice skin may be influenced by factors such as disorganization of the dermis. Morphological aspects of skin should be taken into account in studies that involve optical strategies in murine models.
Optical Coherence Tomography (OCT) is a noninvasive imaging technique with high resolution widely used for in vivo applications. Nonetheless, OCT is prone to speckle, a granular noise that degrades the OCT signal. Speckle statistics may, nevertheless, reveal information regarding the scatterers from which it originates. This fact is exploited by techniques such as Speckle Variance-OCT (SVOCT). SVOCT, however, doesn’t provide quantitative information, which is a major drawback for the use of speckle based techniques on OCT. In the present work we attack this problem, proposing a new method for analysis of speckle in OCT signal, based on autocorrelation. We associate the changes in decorrelation time of the signal with the changes in flow velocity. It is expected that greater velocities result in lower decorrelation times. To verify that, milk was pumped through a microchannel at different velocities, and the decorrelation time was computed for a single point in the center of the microchannel, sampled at 8 kHz rate. Our results suggest that for flows rates greater than 1 μl/min it is possible to associate decorrelation time with flow velocity, while velocities below that value are not distinguishable, supposedly due to the Brownian motion. For flow rates above 50 μl/min our acquisition rate doesn’t get enough sampling information, as the decorrelation time gets too low. These results indicate that Speckle based techniques may be used to get quantitative information of flow in OCT samples, which can be used to assist in many diagnostics modalities, as well as map such flow regions.
Optical Coherence Tomography (OCT) is a noninvasive technique capable of generating in vivo high-resolution images. However, OCT images are degraded by a granular and random noise called speckle. Nevertheless, such a noise may be used to gather information regarding the sample, as is exploited by techniques like Speckle Variance – OCT (SV-OCT). SV-OCT is widely used in the literature, but the variance calculation is computationally expensive. Therefore, we propose a new algorithm to employ speckle in identifying flow based on the evaluation of intensity fluctuation between two consecutively acquired OCT images. Our results were compared to those obtained by traditional method of Speckle Variance to demonstrate the feasibility of the technique. Both algorithms were applied to series of OCT images from a microchannel flow phantom, as well as from a biological tissue with blood flow. The results obtained by our method are in good agreement with those from SV-OCT. We've also analyzed the performance of both algorithms, registering the processing time and memory use. Our method performed 31% faster with the same use of memory. Therefore, we demonstrated a new method to map flow on OCT images.
Optical Coherence Tomography (OCT) systems, as all low coherence interferometry equipments, are mainly
grouped in two categories: Time Domain and Frequency Domain, depending on the methodology of data analysis.
When measuring samples with high reflectivity, using Frequency Domain systems, detrimental features on OCT
images can appear as a replication of a feature at multiple depths on the resulting image, referred as harmonics by
the community. This work presents the potential to access better axial resolution and accuracy results on profile
measurements analyzing higher harmonics. A variety of measurements of samples with different features, such as
roughness, angles and movement evaluation were performed in order to demonstrate the advantages of this approach
as a low cost way to have better visualization of reliefs close to the system nominal axial resolution.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.