Spatial computing enables overlay of the digital world over the real world in a spatially interactive manner by merging digital light-fields, perception systems, and computing. The digital content presented by the spatial computing needs to work tandemly with real-world surroundings, and more importantly the human eye-brain system, which is the ultimate judge for system success. As a result, to develop a spatial computing system, it would be essential to have a proxy for the human eye-brain to calibrate and verify the performance of the spatial computing system. This paper proposes a novel camera design for such purpose which mimics human ocular anatomy and physiology in the following aspects: geometry, optical performance and ocular motor control. Specifically, the proposed camera not only adopts the same corneal and pupil geometry from human eye, also the iris and pupil can be configured with multiple texture, color and diameter options. Furthermore, the resolution of eyeball camera is designed to match the acuity of typical 20/20 human vision, and focus can be dynamically adjusted from 0 to 3 diopters. Lastly, a pair of eyeball cameras are mounted independently on two hexapods to simulate the eye gaze and vergence. With the help of the eyeball cameras, both perceived virtual and real world can be calibrated and evaluated in a deterministic and quantifiable eye conditions like pupil location and gaze. Principally, the proposed eyeball camera serves as a bridge which combines all the data from spatial computing like eye tracking, 3D geometry of the digital world, display color accuracy/uniformity, and display optical quality (sharpness, contrast, etc) for a holistic view, which helps to effectively blend the virtual and real worlds together seamlessly.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.