Solaris is a scientific and technological project aimed at the development of a smart Solar monitoring system at high radio frequencies, based on single-dish imaging techniques. It combines the implementation of dedicated and interchangeable high-frequency receivers on existing small single-dish radio telescope systems (1.5/2.6m class) available in our laboratories and in Antarctica, to be adapted for Solar observations. Solaris can perform Solar imaging observations nearly 20h/day during Antarctic summer with optimal sky opacity, and it will be the only Solar facility offering continuous monitoring at 100GHz. In perspective, our system could be implemented also in the Northern hemisphere to offer unprecedented Solar radio monitoring and imaging for the whole year.
LiteBIRD, the next-generation cosmic microwave background (CMB) experiment, aims for a launch in Japan’s fiscal year 2032, marking a major advancement in the exploration of primordial cosmology and fundamental physics. Orbiting the Sun-Earth Lagrangian point L2, this JAXA-led strategic L-class mission will conduct a comprehensive mapping of the CMB polarization across the entire sky. During its 3-year mission, LiteBIRD will employ three telescopes within 15 unique frequency bands (ranging from 34 through 448 GHz), targeting a sensitivity of 2.2 μK-arcmin and a resolution of 0.5° at 100 GHz. Its primary goal is to measure the tensor-toscalar ratio r with an uncertainty δr = 0.001, including systematic errors and margin. If r ≥ 0.01, LiteBIRD expects to achieve a > 5σ detection in the ℓ = 2–10 and ℓ = 11–200 ranges separately, providing crucial insight into the early Universe. We describe LiteBIRD’s scientific objectives, the application of systems engineering to mission requirements, the anticipated scientific impact, and the operations and scanning strategies vital to minimizing systematic effects. We will also highlight LiteBIRD’s synergies with concurrent CMB projects.
COSMO (COSmic Monopole Observer) is an experiment aimed at the searching for spectral distortions in the CMB (Cosmic Microwave Background) between 120 and 300 GHz. COSMO will be operated from Concordia Station on the Antarctic plateau. The experiment is based on a cryogenic Martin-Puplett interferometer whose superconductive detectors are KIDs (Kinetic Inductance Detectors). The interferometer produces interferograms proportional to the difference between the sky and an internal reference black body. The sky signal has a fast modulation to compensate for the atmospheric fluctuations. A key requirement of the readout is an ultra-fast rate to track the signal modulation and also for detector diagnostic. The readout architecture is based on an IQ transceiver generating a comb of test tones tuned to each detector. We developed a modular readout based on commercial components for reliability and fast prototyping. We were able to reach and sustain a readout rate higher than 60 kHz for 18 detectors. In this contribution a general description of the architecture, together with the main performances in terms of amplitude and phase noise are given.
In this work, we present the design and manufacturing of the two multi-mode antenna arrays of the COSMO experiment and the preliminary beam pattern measurements of their fundamental mode compared with simulations.
COSMO is a cryogenic Martin-Puplett Fourier Transform Spectrometer that aims at measuring the isotropic y-type spectral distortion of the Cosmic Microwave Background from Antarctica, by performing differential measurements between the sky and an internal, cryogenic reference blackbody. To reduce the atmospheric contribution, a spinning wedge mirror performs fast sky-dips at varying elevations while fast, low-noise Kinetic Inductance detectors scan the interferogram.
Two arrays of antennas couple the radiation to the detectors. Each array consists of nine smooth-walled multi-mode feed-horns, operating in the 120−180 GHz and 210−300 GHz range, respectively. The multi-mode propagation helps increase the instrumental sensitivity without employing large focal planes with hundreds of detectors. The two arrays have a step-linear and a linear profile, respectively, and are obtained by superimposing aluminum plates made with CNC milling. The simulated multi-mode beam pattern has a ~ 20° − 26° FWHM for the low-frequency array and ~16° FWHM for the high-frequency one. The side lobes are below −15 dB.
To characterize the antenna response, we measured the beam pattern of the fundamental mode using a Vector Network Analyzer, in far-field conditions inside an anechoic chamber at room temperature. We completed the measurements of the low-frequency array and found a good agreement with the simulations. We also identified a few non-idealities that we attribute to the measuring setup and will further investigate. A comprehensive multi-mode measurement will be feasible at cryogenic temperature once the full receiver is integrated.
QUBIC (Q and U bolometric interferometer for cosmology) is an international ground-based experiment dedicated to the measurement of the polarized fluctuations of the cosmic microwave background (CMB). It is based on bolometric interferometry, an original detection technique which combines the immunity to systematic effects of an interferometer with the sensitivity of low temperature incoherent detectors. QUBIC will be deployed in Argentina, at the Alto Chorrillos mountain site near San Antonio de los Cobres, in the Salta province. The QUBIC detection chain consists of 2048 NbSi transition edge sensors (TESs) cooled to 320 mK. The voltage-biased TESs are read out with time domain multiplexing based on superconducting quantum interference devices (SQUIDs) at 1 K and a novel SiGe application-specific integrated circuit (ASIC) at 60 K allowing an unprecedented multiplexing (MUX) factor equal to 128 to be reached. The current QUBIC version is based on a reduced number of detectors (1/4) in order to validate the detection technique. The QUBIC experiment is currently being validated in the lab in Salta (Argentina) before going to the site for observations. This paper presents the main results of the characterization phase with a focus on the detectors and readout system.
We describe the readout electronics for Kinetic Inductance Detectors (KIDs) that we are developing based on a commercial IQ transceivers from National Instruments and using a Virtex 5 class FPGA. It will be the readout electronics of the COSmic Monopole Observer (COSMO) experiment, a ground based cryogenic Martin-Puplett Interferometer searching for the Cosmic Microwave Background spectral y-distortions. The COSMO readout electronics requires a sampling rate in the range of tens of kHz, due to both a fast modulation of the signal with a spinning optical element and the short time constant of the Kinetic Inductance Detectors (KIDs) used in COSMO. In this contribution we show the capabilities of our readout electronics using Niobium KIDs developed by Paris Observatory for our 5 K cryogenic system. In particular, we demonstrate the capability to detect 23 resonators from frequency sweeps and to readout the state of each resonator with a sampling rate at about 12 kHz.
LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 μK-arcmin with a typical angular resolution of 0.5° at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes.
LiteBIRD has been selected as JAXA’s strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) B-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of -56 dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34–161 GHz), one of LiteBIRD’s onboard telescopes. It has a wide field-of-view (18° x 9°) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90◦ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at 5 K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented.
LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular scales, and over 15 frequency bands from 34 GHz to 448 GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-, Medium-and High-Frequency Telescope (respectively LFT, MFT and HFT). We present in this paper an overview of the design of the Medium-Frequency Telescope (89{224 GHz) and the High-Frequency Telescope (166{448 GHz), the so-called MHFT, under European responsibility, which are two cryogenic refractive telescopes cooled down to 5 K. They include a continuous rotating half-wave plate as the first optical element, two high-density polyethylene (HDPE) lenses and more than three thousand transition-edge sensor (TES) detectors cooled to 100 mK. We provide an overview of the concept design and the remaining specific challenges that we have to face in order to achieve the scientific goals of LiteBIRD.
QUBIC (a Q and U Bolometric Interferometer for Cosmology) is a next generation cosmology experiment designed to detect the B-mode polarisation of the Cosmic Microwave Background (CMB). A B-mode detection is hard evidence of Inflation in the ΛCDM model. QUBIC aims to accomplish this by combining novel technologies to achieve the sensitivity required to detect the faint B-mode signal. QUBIC uses technologies such as a rotating half-wave plate, cryogenics, interferometric horns with self-calibration switches and transition edge sensor bolometers. A Technical Demonstrator (TD) is currently being calibrated in APC in Paris before observations in Argentina in 2021. As part of the calibration campaign, the spectral response of the TD is measured to test and validate QUBIC's spectro-imaging capability. This poster gives an overview of the methods used to measure the spectral response and a comparison of the instrument data with theoretical predictions and optical simulations.
The Q and U Bolometric Interferometer for Cosmology (QUBIC) Technical Demonstrator (TD) aiming to shows the feasibility of the combination of interferometry and bolometric detection. The electronic readout system is based on an array of 128 NbSi Transition Edge Sensors cooled at 350mK readout with 128 SQUIDs at 1K controlled and amplified by an Application Specific Integrated Circuit at 40K. This readout design allows a 128:1 Time Domain Multiplexing. We report the design and the performance of the detection chain in this paper. The technological demonstrator unwent a campaign of test in the lab. Evaluation of the QUBIC bolometers and readout electronics includes the measurement of I-V curves, time constant and the Noise Equivalent Power. Currently the mean Noise Equivalent Power is ~ 2 x 10-16W= p √Hz
QUBIC, the Q & U Bolometric Interferometer for Cosmology, is a novel ground-based instrument that has been designed to measure the extremely faint B-mode polarisation anisotropy of the cosmic microwave background at intermediate angular scales (multipoles of 𝑙 = 30 − 200). Primordial B-modes are a key prediction of Inflation as they can only be produced by gravitational waves in the very early universe. To achieve this goal, QUBIC will use bolometric interferometry, a technique that combines the sensitivity of an imager with the systematic error control of an interferometer. It will directly observe the sky through an array of 400 back-to-back entry horns whose signals will be superimposed using a quasi-optical beam combiner. The resulting interference fringes will be imaged at 150 and 220 GHz on two focal planes, each tiled with NbSi Transition Edge Sensors, cooled to 320 mK and read out with time-domain multiplexing. A dichroic filter placed between the optical combiner and the focal planes will select the two frequency bands. A very large receiver cryostat will cool the optical and detector stages to 40 K, 4 K, 1 K and 320 mK using two pulse tube coolers, a novel 4He sorption cooler and a double-stage 3He/4He sorption cooler. Polarisation modulation and selection will be achieved using a cold stepped half-wave plate (HWP) and polariser, respectively, in front of the sky-facing horns. A key feature of QUBIC’s ability to control systematic effects is its ‘self-calibration’ mode where fringe patterns from individual equivalent baselines can be compared. When observing, however, all the horns will be open simultaneously and we will recover a synthetic image of the sky in the I, Q and U Stokes’ parameters. The synthesised beam pattern has a central peak of approximately 0.5 degrees in width, with secondary peaks further out that are damped by the 13-degree primary beam of the horns. This is Module 1 of QUBIC which will be installed in Argentina, near the city of San Antonio de los Cobres, at the Alto Chorrillos site (4869 m a.s.l.), Salta Province. Simulations have shown that this first module could constrain the tensor-to-scalar ratio down to σ(r) = 0.01 after a two-year survey. We aim to add further modules in the future to increase the angular sensitivity and resolution of the instrument. The QUBIC project is proceeding through a sequence of steps. After an initial successful characterisation of the detection chain, a technological demonstrator is being assembled to validate the full instrument design and to test it electrically, thermally and optically.
The technical demonstrator is a scaled-down version of Module 1 in terms of the number of detectors, input horns and pulse tubes and a reduction in the diameter of the combiner mirrors and filters, but is otherwise similar. The demonstrator will be upgraded to the full module in 2019. In this paper we give an overview of the QUBIC project and instrument.
QUBIC, the QU Bolometric Interferometer for Cosmology, is a novel forthcoming instrument to measure the B-mode polarization anisotropy of the Cosmic Microwave Background. The detection of the B-mode signal will be extremely challenging; QUBIC has been designed to address this with a novel approach, namely bolometric interferometry. The receiver cryostat is exceptionally large and cools complex optical and detector stages to 40 K, 4 K, 1 K and 350 mK using two pulse tube coolers, a novel 4He sorption cooler and a double-stage 3He/4He sorption cooler. We discuss the thermal and mechanical design of the cryostat, modelling and thermal analysis, and laboratory cryogenic testing.
QUBIC (the Q and U Bolometric Interferometer for Cosmology) is a ground-based experiment which seeks to improve the current constraints on the amplitude of primordial gravitational waves. It exploits the unique technique, among Cosmic Microwave Background experiments, of bolometric interferometry, combining together the sensitivity of bolometric detectors with the control of systematic effects typical of interferometers. QUBIC will perform sky observations in polarization, in two frequency bands centered at 150 and 220 GHz, with two kilo-pixel focal plane arrays of NbSi Transition-Edge Sensors (TES) cooled down to 350 mK. A subset of the QUBIC instrument, the so called QUBIC Technological Demonstrator (TD), with a reduced number of detectors with respect to the full instrument, will be deployed and commissioned before the end of 2018.
The voltage-biased TES are read out with Time Domain Multiplexing and an unprecedented multiplexing (MUX) factor equal to 128. This MUX factor is reached with two-stage multiplexing: a traditional one exploiting Superconducting QUantum Interference Devices (SQUIDs) at 1K and a novel SiGe Application-Specific Integrated Circuit (ASIC) at 60 K. The former provides a MUX factor of 32, while the latter provides a further 4. Each TES array is composed of 256 detectors and read out with four modules of 32 SQUIDs and two ASICs. A custom software synchronizes and manages the readout and detector operation, while the TES are sampled at 780 Hz (100kHz/128 MUX rate).
In this work we present the experimental characterization of the QUBIC TES arrays and their multiplexing readout chain, including time constant, critical temperature, and noise properties.
QUBIC, the Q & U Bolometric Interferometer for Cosmology, is a novel ground-based instrument that aims to measure the extremely faint B-mode polarisation anisotropy of the cosmic microwave background at intermediate angular scales (multipoles of 𝑙 = 30 − 200). Primordial B-modes are a key prediction of Inflation as they can only be produced by gravitational waves in the very early universe. To achieve this goal, QUBIC will use bolometric interferometry, a technique that combines the sensitivity of an imager with the immunity to systematic effects of an interferometer. It will directly observe the sky through an array of back-to-back entry horns whose beams will be superimposed using a cooled quasioptical beam combiner. Images of the resulting interference fringes will be formed on two focal planes, each tiled with transition-edge sensors, cooled down to 320 mK. A dichroic filter placed between the optical combiner and the focal planes will select two frequency bands (centred at 150 GHz and 220 GHz), one frequency per focal plane. Polarization modulation will be achieved using a cold stepped half-wave plate (HWP) and polariser in front of the sky-facing horns.
The full QUBIC instrument is described elsewhere1,2,3,4; in this paper we will concentrate in particular on simulations of the optical combiner (an off-axis Gregorian imager) and the feedhorn array. We model the optical performance of both the QUBIC full module and a scaled-down technological demonstrator which will be used to validate the full instrument design. Optical modelling is carried out using full vector physical optics with a combination of commercial and in-house software. In the high-frequency channel we must be careful to consider the higher-order modes that can be transmitted by the horn array. The instrument window function is used as a measure of performance and we investigate the effect of, for example, alignment and manufacturing tolerances, truncation by optical components and off-axis aberrations. We also report on laboratory tests carried on the QUBIC technological demonstrator in advance of deployment to the observing site in Argentina.
In this paper we discuss the latest developments of the STRIP instrument of the “Large Scale Polarization Explorer” (LSPE) experiment. LSPE is a novel project that combines ground-based (STRIP) and balloon-borne (SWIPE) polarization measurements of the microwave sky on large angular scales to attempt a detection of the “B-modes” of the Cosmic Microwave Background polarization. STRIP will observe approximately 25% of the Northern sky from the “Observatorio del Teide” in Tenerife, using an array of forty-nine coherent polarimeters at 43 GHz, coupled to a 1.5 m fully rotating crossed-Dragone telescope. A second frequency channel with six-elements at 95 GHz will be exploited as an atmospheric monitor. At present, most of the hardware of the STRIP instrument has been developed and tested at sub-system level. System-level characterization, starting in July 2018, will lead STRIP to be shipped and installed at the observation site within the end of the year. The on-site verification and calibration of the whole instrument will prepare STRIP for a 2-years campaign for the observation of the CMB polarization.
Remnant radiation from the early universe, known as the Cosmic Microwave Background (CMB), has been redshifted and cooled, and today has a blackbody spectrum peaking at millimetre wavelengths. The QUBIC (Q&U Bolometric Interferometer for Cosmology) instrument is designed to map the very faint polaristion structure in the CMB. QUBIC is based on the novel concept of bolometric interferometry in conjunction with synthetic imaging. It will have a large array of input feedhorns, which creates a large number of interferometric baselines.
The beam from each feedhorn is passed through an optical combiner, with an off-axis compensated Gregorian design, to allow the generation of the synthetic image. The optical-combiner will operate in two frequency bands (150 and 220 GHz with 25% and 18.2 % bandwidth respectively) while cryogenically cooled TES bolometers provide the sensitivity required at the image plane.
The QUBIC Technical Demonstrator (TD), a proof of technology instrument that contains 64 input feed-horns, is currently being built and will be installed in the Alto Chorrillos region of Argentina. The plan is then for the full QUBIC instrument (400 feed-horns) to be deployed in Argentina and obtain cosmologically significant results.
In this paper we will examine the output of the manufactered feed-horns in comparison to the nominal design. We will show the results of optical modelling that has been performed in anticipation of alignment and calibration of the TD in Paris, in particular testing the validity of real laboratory environments. We show the output of large calibrator sources (50 ° full width haf max Gaussian beams) and the importance of accurate mirror definitions when modelling large beams. Finally we describe the tolerance on errors of the position and orientation of mirrors in the optical combiner.
Big Bang cosmologies predict that the cosmic microwave background (CMB) contains faint temperature and polarisation
anisotropies imprinted in the early universe. ESA's PLANCK satellite has already measured the temperature
anisotropies1 in exquisite detail; the next ambitious step is to map the primordial polarisation signatures which are
several orders of magnitude lower. Polarisation E-modes have been measured2 but the even-fainter primordial B-modes
have so far eluded detection. Their magnitude is unknown but it is clear that a sensitive telescope with exceptional
control over systematic errors will be required.
QUBIC3 is a ground-based European experiment that aims to exploit the novel concept of bolometric interferometry in
order to measure B-mode polarisation anisotropies in the CMB. Beams from an aperture array of corrugated horns will
be combined to form a synthesised image of the sky Stokes parameters on two focal planes: one at 150 GHz the other at
220 GHz. In this paper we describe recent optical modelling of the QUBIC beam combiner, concentrating on modelling
the instrument point-spread-function and its operation in the 220-GHz band. We show the effects of optical aberrations
and truncation as successive components are added to the beam path. In the case of QUBIC, the aberrations introduced
by off-axis mirrors are the dominant contributor. As the frequency of operation is increased, the aperture horns allow up to five hybrid modes to propagate and we illustrate how the beam pattern changes across the 25% bandwidth. Finally we
describe modifications to the QUBIC optical design to be used in a technical demonstrator, currently being manufactured
for testing in 2016.
We present the results of a development activity for cryogenic Low Noise Amplifiers based on HEMT technology for ground based and space-borne application. We have developed and realized two LNA design in W band, based on m-HEMT technology. MMIC chips have been manufactured by European laboratories and companies and assembled in test modules by our team. We compare performances with other technologies and manufacturers. LNA RF properties (noise figures, S-parameters) have been measured at room and cryogenic temperature and test results are reported in this paper. Performance are compared with those of state-of-the-art devices, as available in the literature. Strengths and improvements of this project are also discussed.
L. Valenziano, S. Mariotti, A. Armogida, A. Baù, M. Biggi, L. Carbonaro, A. Cremonini, A. De Rosa, M. Gervasi, A. Passerini, F. Schiavone, M. Zannoni, J. Zuccarelli
Cryogenic Low Noise Amplifiers, based on MMIC HEMT technology, require a careful packaging to reach optimal
performance. Differences between modeled and measured performance can often be related to chip mounting details. In
the framework of the development of new cryogenic LNAs, described in a companion paper, we have developed a
specific packaging to host W-band cryogenic MMIC LNAs. We present here some of the main factors analyzed in the
design and chip integration activities. In particular, mechanical and thermal modeling, LNA chip gluing and adhesive
properties, sensitivity to components integration accuracy (i.e. deviation from the ideal orientation). Preliminary test
results are also reported.
S. Aiola, G. Amico, P. Battaglia, E. Battistelli, A. Baù, P. de Bernardis, M. Bersanelli, A. Boscaleri, F. Cavaliere, A. Coppolecchia, A. Cruciani, F. Cuttaia, A. D' Addabbo, G. D' Alessandro, S. De Gregori, F. Del Torto, M. De Petris, L. Fiorineschi, C. Franceschet, E. Franceschi, M. Gervasi, D. Goldie, A. Gregorio, V. Haynes, N. Krachmalnicoff, L. Lamagna, B. Maffei, D. Maino, S. Masi, A. Mennella, G. Morgante, F. Nati, M. W. Ng, L. Pagano, A. Passerini, O. Peverini, F. Piacentini, L. Piccirillo, G. Pisano, S. Ricciardi, P. Rissone, G. Romeo, M. Salatino, M. Sandri, A. Schillaci, L. Stringhetti, A. Tartari, R. Tascone, L. Terenzi, M. Tomasi, E. Tommasi, F. Villa, G. Virone, S. Withington, A. Zacchei, M. Zannoni
The LSPE is a balloon-borne mission aimed at measuring the polarization of the Cosmic Microwave Background (CMB)
at large angular scales, and in particular to constrain the curl component of CMB polarization (B-modes) produced by
tensor perturbations generated during cosmic inflation, in the very early universe. Its primary target is to improve the
limit on the ratio of tensor to scalar perturbations amplitudes down to r = 0.03, at 99.7% confidence. A second target is
to produce wide maps of foreground polarization generated in our Galaxy by synchrotron emission and interstellar dust
emission. These will be important to map Galactic magnetic fields and to study the properties of ionized gas and of
diffuse interstellar dust in our Galaxy. The mission is optimized for large angular scales, with coarse angular resolution
(around 1.5 degrees FWHM), and wide sky coverage (25% of the sky). The payload will fly in a circumpolar long
duration balloon mission during the polar night. Using the Earth as a giant solar shield, the instrument will spin in
azimuth, observing a large fraction of the northern sky. The payload will host two instruments. An array of coherent
polarimeters using cryogenic HEMT amplifiers will survey the sky at 43 and 90 GHz. An array of bolometric
polarimeters, using large throughput multi-mode bolometers and rotating Half Wave Plates (HWP), will survey the same
sky region in three bands at 95, 145 and 245 GHz. The wide frequency coverage will allow optimal control of the
polarized foregrounds, with comparable angular resolution at all frequencies.
M. Bersanelli, A. Mennella, G. Morgante, M. Zannoni, G. Addamo, A. Baschirotto, P. Battaglia, A. Baù, B. Cappellini, F. Cavaliere, F. Cuttaia, F. Del Torto, S. Donzelli, Z. Farooqui, M. Frailis, C. Franceschet, E. Franceschi, T. Gaier, S. Galeotta, M. Gervasi, A. Gregorio, P. Kangaslahti, N. Krachmalnicoff, C. Lawrence, G. Maggio, R. Mainini, D. Maino, N. Mandolesi, B. Paroli, A. Passerini, O. Peverini, S. Poli, S. Ricciardi, M. Rossetti, M. Sandri, M. Seiffert, L. Stringhetti, A. Tartari, R. Tascone, D. Tavagnacco, L. Terenzi, M. Tomasi, E. Tommasi, F. Villa, Gi. Virone, A. Zacchei
We discuss the design and expected performance of STRIP (STRatospheric Italian Polarimeter), an array of coherent receivers designed to fly on board the LSPE (Large Scale Polarization Explorer) balloon experiment. The STRIP focal plane array comprises 49 elements in Q band and 7 elements in W-band using cryogenic HEMT low noise amplifiers and high performance waveguide components. In operation, the array will be cooled to 20 K and placed in the focal plane of a ~0.6 meter telescope providing an angular resolution of ~1.5 degrees. The LSPE experiment aims at large scale, high sensitivity measurements of CMB polarization, with multi-frequency deep measurements to optimize component separation. The STRIP Q-band channel is crucial to accurately measure and remove the synchrotron polarized component, while the W-band channel, together with a bolometric channel at the same frequency, provides a crucial cross-check for systematic effects.
We have developed a set-up to perform measurements of S-parameters on devices operated at low temperature,
using a Vector Network Analyzer in combination with a cryogenic chamber. High accuracy in the characterization
of the devices is obtained using a set of TRL calibration standards operated at the same cryogenic temperature of
the DUT. Measurements have been performed on Front-End-Modules of mm-wave receivers including cryogenic
LNA developed within our collaboration.
The Q and U Bolometric Interferometer for Cosmology (QUBIC) is a ground-based interferometer that aims to meet one of the major challenges of modern cosmology in the detection of B-mode polarization anisotropies in the Cosmic Microwave Background.B-mode anisotropies originate from tensor fluctuations of the metric produced during the inflationary phase of the early Universe. Their detection would therefore constitute a major step towards understanding the primordial Universe. The expected level of these anisotropies is however so small that detection requires instruments with high sensitivity and extremely good control of systematic effects. The QUBIC instrument is based on the novel concept of bolometric interferometry, and exploits the sensitivity advantages of bolometric detectors along with the greater control of systematics offered by interferometry.The instrument will directly observe the sky through an array of entry horns whose signals will be combined optically onto an array of bolometers cooled to around 300mK. The whole set-up is located inside a cryostat. The sensitivity of the instrument is maximised if equivalent baselines produce identical fringe patterns on the focal plane. This requires the minimization of wavefront aberrations for a wide field-of-view and a fast system.In this poster we present the quasi-optical design and analysis of the dual reflector designed to do this. We report on the loss of sensitivity for different levels of optical aberration in the combiner. The sensitivity of the QUBIC instrument is comparable with that of an imager with the same number of horns but with much greater control over systematics.
BaR-SPOrt (Balloon-borne Radiometers for Sky Polarisation
Observations) is an experiment to measure the linearly polarized
emission of sky patches at 32 and 90 GHz with sub-degree angular
resolution. It is equipped with high sensitivity correlation
polarimeters for simultaneous detection of both the U and Q stokes
parameters of the incident radiation. On-axis telescope is used to
observe angular scales where the expected polarization of the
Cosmic Microwave Background (CMBP) peaks. This project shares most
of the know-how and sophisticated technology developed for the
SPOrt experiment onboard the International Space Station. The
payload is designed to flight onboard long duration stratospheric
balloons both in the Northern and Southern hemispheres where low
foreground emission sky patches are accessible. Due to the
weakness of the expected CMBP signal (in the range of microK),
much care has been spent to optimize the instrument design with
respect to the systematics generation, observing time efficiency
and long term stability. In this contribution we present the
instrument design, and first tests on some components of the 32
GHz radiometer.
SPOrt (Sky Polarization Observatory) is a space experiment to be flown on the International Space Station during Early Utilization Phase aimed at measuring the microwave polarized emission with FWHM = 7 deg, in the frequency range 22-90 GHz. The Galactic polarized emission can be observed at the lower frequencies and the polarization of Cosmic Microwave Background (CMB) at 90 GHz, where contaminants are expected to be less important. The extremely low level of the CMB Polarization signal calls for intrinsically stable radiometers. The SPOrt instrument is expressly devoted to CMB polarization measurements and the whole design has been optimized for minimizing instrumental polarization effects. In this contribution we present the receiver architecture based on correlation techniques, the analysis showing its intrinsic stability and the custom hardware development carried out to detect such a low signal.
We have developed a correlation radiometer at 33 GHz devoted
to the search for the residual polarization of the Cosmic
Microwave Background (CMB). The two instrument's outputs are a
linear combination of two Stokes parameters. The instrument is therefore directly sensitive to the polarized component of the radiation (rispectively linear and circular). The radiometer has a beamwidth of 7 or 14 degree, but it can be coupled to a telescope increasing the resolution. The expected CMB polarization is at most a part per million. The polarimeter has been designed to be sensitive to this faint signal, and it has been optimized to improve its long term stability, observing from the ground. In this contribution the performances of the instrument are presented, together with the preliminary tests and observations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.