This paper focuses on the designing of tracking control strategies for ground-based telescopes by also comparing model-based solutions with more classical alternatives. Within this framework, we synthesize a double-layer control architecture consisting of: i) a position control layer, which combines a Kalman filter observer and Linear-Quadratic-Gaussian-Proportional-Integral (LQG-PI) controller to compute the appropriate speed profile guaranteeing a reliable tracking of a given telescope position trajectories; ii) a speed control layer, which ensures the optimal tracking of the computed speed profile by driving the torque of the telescope. Moreover, a trapezoidal speed pre-processor is embedded in our control architecture with the aim of computing the appropriate telescope axes position trajectories: this ensures that all the telescope physical constraints, in terms of speed and acceleration, are not always violated. Virtual simulations, carried out via an ad-hoc simulation platform, implemented in Matalb&Simulink and tailored for the specific case study Telescopio Nazionale Galileo (TNG) located at La Palma island, disclose the effectiveness of the hierarchical control architecture for a representative set of star trajectories. Validation phase also considers several realistic conditions and takes into account input disturbance such as the Von-Karman wind disturbance model. Finally, a comparison analysis with a PID-based control architecture is provided to discuss about the advantages and benefits of the proposed optimal control solution.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.