We investigate the tunability of metasurface resonances through an electro-optic mechanism based on the Pockels effect. By integrating an electro-optic material with a designed multi-resonant nanoantenna array, we demonstrate control and wide-range tunability of the metasurface resonances. The applied electric field enables dynamic modulation of the optical properties, allowing for the adjustment of the metasurface response. This approach offers a versatile platform for developing tunable photonic devices, with potential applications in optical communication and sensing.
In previous work, we have introduced an analytical approach that utilizes the dispersion relation for an infinite periodic multilayer structure to predict the performance of finite multilayer structures. We have validated the accuracy of our predictions by demonstrating numerical agreement with other established simulation methods, such as the transfer matrix method, and through experimental confirmation. In this work, we employ dispersion relations to first illustrate that metallo-dielectric structures, as opposed to multilayer dielectric-dielectric structures, can efficiently yield a sharp-edge transmittance spectrum profile, with control over both sides of the bandpass cutoff edges. Our approach also enables the calculation of effective permittivity without relying on traditional homogenization techniques. Next, utilizing the concept of effective permittivity, we illustrate that increasing the thickness of specific dielectric layers within MD structures leads to narrower passbands without significant loss in transmission, demonstrating the potential of this approach for engineering the transmittance spectrum of bandpass filters in the visible and near-IR regions. The capability to achieve a sharp-edge filter with a limited number of layers further underscores the cost-effectiveness of such bandpass filters.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.