Due to its flexibility, laser can be used for a wide variety of applications. Applications that are suitable for laser material processing include polishing, hardening, cleaning structuring, soldering and 3D printing (SLM). However, treating of complex freeform surfaces is challenging in terms of track planning. As manual track planning is not economically viable, there is a demand for software solutions for track planning with respect to time-based processes. This paper deals with the development of a software solution for automated track planning with respect to time-based processes. In addition, the introduced software includes postprocessors for fully automated G-Code, Rapid and Kuka Robot Language (KRL) generation. To demonstrate the feasibility and advantage of a time-based offline track planning of robot guided laser application, an additively manufactured freeform surface was laser polished. An application example represents the robot guided laser polishing of a complex 3D freeform surface. Investigations revealed a relative roughness reduction ~92 % of X2CrNiMo17-12-2 steel (1.4404).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.