The M2 secondary mirror of the Vera C. Rubin Observatory, scheduled to be commissioned on-sky in 2024, will be the first active secondary mirror of 3.5m diameter in operation. Its substantial dimensions and advanced functionalities place it in league with the secondary mirrors of the upcoming 30m class telescopes. Characterizing its performance serves as a critical step towards comprehending and controlling the optics of the next generation of Extremely Large Telescopes (ELTs). This study focuses on testing and validating the M2 cell in the Observatory’s integration hall and at the Telescope Mount Assembly (TMA). We also report on the integration steps of the M2 cell onto the TMA itself, including installing the light baffle. During the testing campaign, the M2 cell is equipped with an aluminum mirror surrogate for safety reasons regarding the glass mirror. To ensure integrity when the thin glass mirror (10cm) is installed onto the telescope, the M2 support system must be actively controlled during any M2 cell movement. This prompted the development of a dedicated control system to enable closed loop mode for transporting the M2 cell with the glass mirror from the integration hall to the telescope. The tests in the integration hall were conducted with the M2 cell mounted on a rotating cart, allowing different orientations with respect to gravity as it will experience on the telescope. Upon reaching the telescope, static and dynamic tests are conducted at progressively higher telescope performance, increasing slewing speed, acceleration, and jerk. A significant novelty introduced by Rubin to astronomical instrumentation is the Verification & Validation architecture as part of the model-based Systems Engineering approach where requirements, test procedures and executions are merged into an interlaced and dynamic flow. This report presents the experimental results from the distinct test campaigns covering a wide range of M2 cell functionalities. These include characterization of actuator behavior in terms of maximum stroke and force limits, evaluation of closed-loop (active) and open-loop (passive) support system operation for the M2, system settling time and Force Balance response to different slewing speeds of the telescope.
Euclid is a European Space Agency (ESA) wide-field space mission dedicated to the high-precision study of dark energy and dark matter. In July 2023 a Space X Falcon 9 launch vehicle put the spacecraft in its target orbit, located 1.5 million kilometers away from Earth, for a nominal lifetime of 6.5 years. The survey will be realized through a wide field telescope and two instruments: a visible imager (VIS) and a Near Infrared Spectrometer and Photometer (NISP). NISP is a state-of-the-art instrument composed of many subsystems, including an optomechanical assembly, cryogenic mechanisms, and active thermal control. The Instrument Control Unit (ICU) is interfaced with the SpaceCraft and manages the commanding and housekeeping production while the high-performance Data Processing Unit manages more than 200 Gbit of compressed data acquired daily during the nominal survey. To achieve the demanding performance necessary to meet the mission’s scientific goals, NISP requires periodic in-flight calibrations, instrument parameters monitoring, and careful control of systematic effects. The high stability required implies that operations are coordinated and synchronized with high precision between the two instruments and the platform. Careful planning of commanding sequences, lookahead, and forecasting instrument monitoring is needed, with greater complexity than previous survey missions. Furthermore, NISP is operated in different environments and configurations during development, verification, commissioning, and nominal operations. This paper presents an overview of the NISP instrument operations at the beginning of routine observations. The necessary tools, workflows, and organizational structures are described. Finally, we show examples of how instrument monitoring was implemented in flight during the crucial commissioning phase, the effect of intense Solar activity on the transmission of onboard data, and how IOT successfully addressed this issue.
KEYWORDS: Databases, Data storage, Surface conduction electron emitter displays, Observatories, Data modeling, Galactic astronomy, Human-machine interfaces, Stars, 3D modeling, Interfaces
The VIALACTEA project has a work package dedicated to “Tools and Infrastructure" and, inside it, a task for the “Database and Virtual Observatory Infrastructure". This task aims at providing an infrastructure to store all the resources needed by the, more purposely, scientific work packages of the project itself. This infrastructure includes a combination of: storage facilities, relational databases and web services on top of them, and has taken, as a whole, the name of VIALACTEA Knowledge Base (VLKB). This contribution illustrates the current status of this VLKB. It details the set of data resources put together; describes the database that allows data discovery through VO inspired metadata maintenance; illustrates the discovery, cutout and access services built on top of the former two for the users to exploit the data content.
KEYWORDS: Data mining, Astronomy, Data modeling, Web 2.0 technologies, Galactic astronomy, Machine learning, Data centers, Spectroscopy, Parallel computing, Data archive systems
The emerging field of AstroInformatics, while on the one hand appears crucial to face the technological challenges, on
the other is opening new exciting perspectives for new astronomical discoveries through the implementation of advanced data mining procedures. The complexity of astronomical data and the variety of scientific problems, however, call for innovative algorithms and methods as well as for an extreme usage of ICT technologies. The DAME (DAta Mining and Exploration) Program exposes a series of web-based services to perform scientific investigation on astronomical massive data sets. The engineering design and requirements, driving its development since the beginning of the project, are projected towards a new paradigm of Web based resources, which reflect the final goal to become a prototype of an efficient data mining framework in the data-centric era.
The 2.6m VST telescope is in installation phase in the ESO observatory of Cerro Paranal. After preliminary tests in
Europe performed jointly by INAF and ESO the tracking system was considered at the readiness level to be shipped to
Chile. The motion control system has already been reintegrated in Chile and is operational again. The final tuning is
going to be performed after the integration of all the telescope subsystems, still in progress. Therefore here the focus is
especially on tests performed in Italy. This paper describes the solutions adopted for the telescope main axes control as
well as the preliminary tracking results. Available test data are related to encoder feedback. Tests have been performed
tracking coordinates of virtual objects. A comprehensive test case to evaluate the performance of different controllers
was needed to proceed in a systematic way. A tracking map derived from the VLT commissioning experience has been
used, spanning all the different conditions for axes positions and speeds, including meridian crossing and tracking near
the blind spot.
The adapter of the VST telescope hosts many devices handled by the overall telescope control software: a probe system to select the guide star realized with motions in polar coordinates, a pickup mirror to fold the light to the image analysis and guiding cameras, a selectable reference light system and a focusing device. The algorithm to select the guide star depends on the specific geometry of the system. All these devices deeply interface with autoguiding, active optics and field rotation compensation systems. A reverse engineering approach mixed to the integration of new specific solutions has been fundamental to match the ESO commitments in terms of software re-use, in order to smoothen the integration of a new telescope designed and built by an external institute in the ESO environment. The control software architecture is here described, as well as the status of work.
The VST active optics software must basically provide the analysis of the image coming from the wavefront sensor (a 10×10 subpupils Shack Hartmann device) and the calculation of primary mirror forces and secondary mirror displacements to correct the intrinsic aberrations of the optical system and the ones originated for thermal or gravity reasons. The software architecture, the simulation code to validate the results and the status of work are here described.
One of the tightest requirements to be respected for a telescope as the VST, hosted in a one of the best astronomical sites as the ESO Paranal Observatory, is an excellent axes control, to obtain the best overall performance of the telescope that, otherwise, can be dramatically affected. The software strategy to control the VST axes (azimuth, altitude, rotator) is here described.
The effects of atmospheric differential refraction on astrophysical measurements are well known. In particular, as a ray of light passes through the atmosphere, its direction is altered by the effects of atmospheric refraction. The amount of this effect depends basically on the variation of the refractive index along the path of the ray. The real accuracy needed in the atmosphere model and in the calculation of the correction to be applied is of course, considerably worse, especially at large zenith angles. On the VLT Survey Telescope (VST) the use of an Atmospheric Dispersion Corrector (ADC) is foreseen at a wide zenith distance range. This paper describes the software design and implementation aspects regarding the analytical correction law discovered to correct the refraction effect during observations with VST.
The VLT Survey Telescope (VST) is a co-operative program between the European Southern Observatory (ESO) and the INAF Capodimonte Astronomical Observatory (OAC), Naples, for the study, design, and realization of a 2.6-m wide-field optical imaging telescope to be operated at the Paranal Observatory, Chile. The telescope design, manufacturing and integration are responsibility of OAC. The VST has been specifically designed to carry out stand-alone observations in the UV to I spectral range and to supply target databases for the ESO Very Large Telescope (VLT). The control hardware is based on a large utilization of distributed embedded specialized controllers specifically designed, prototyped and manufactured by the Technology Working Group for VST project. The use of a field bus improves the whole system reliability in terms of high level flexibility, control speed and allow to reduce drastically the plant distribution in the instrument. The paper describes the philosophy and the architecture of the VST control HW with particular reference to the advantages of this distributed solution for the VST project.
The VLT Survey Telescope (VST) is a cooperative program between the European Southern Observatory (ESO) and the INAF Capodimonte Astronomical Observatory (OAC), Naples, for the study, design, and realization of a 2.6-m wide-field optical imaging telescope to be operated at the Paranal Observatory, Chile. The telescope design, manufacturing and integration are provided and under responsibility of the Technology Working Group (TWG) of OAC. The VST has been specifically designed to carry out stand-alone observations in the UV to I spectral range and to supply target databases for the ESO Very Large Telescope (VLT). The VST control software will operate the telescope, all the auxiliary subsystems and will manage the interfaces toward the instrumentation. The paper will describe the architecture of the software system, including the solutions adopted to be compliant with the ESO standard software environment.
The VST (Very Large Telescope Survey Telescope) is an 2.6 m class Alt-Az telescope which will be installed in the European Southern Observatory (ESO) Paranal site, Chile. It has been designed by the Technology Working Group of the Astronomical Observatory of Capodimonte, Italy. The VST is an 1 degree(s) X 1 degree(s) wide-field imaging facility planned to supply databases for the ESO VLT science and carry out stand-alone observations in the UV to I spectral range starting in the year 2001. All the solutions adopted in the VST design comply to the ESO VLT standards. This paper reports a technical overview of the telescope design.
KEYWORDS: Copper, Control systems, Telescopes, Digital signal processing, Telecommunications, Diagnostics, Space telescopes, Computer programming, Operating systems, Electroluminescence
The TT1 is a 1.54 m Alt-Az telescope designed and built by the Technology Working Group of the Astronomical Observatory of Capodimonte, Naples, Italy. The standardization process is of course one of the fundamental requirements for telescope control system design and development, well considered in the TT1 design. In this paper we present the approach used to identify a control system applicable to medium-size Alt-Az telescope. The TT1 control system architecture is based on a distributed working flow and it is PC-based, i.e. organized in several interconnected standard PCs and standard fast communication protocol. Every PC is based on the 'dedicated processing unit' concept and it makes real time own tasks independently by other units. Also, the extremely reduced communication flow between PCs, and the internal organization based on the preference given to software rather than hardware solutions, makes its control system extremely reliable, easily reconfigurable and upgradable, obsolescence deprived and independent from any hardware choice.
The encoder is the most used angular transducer in position control applications, such as the main axes position control of a telescope. In astronomical applications a very high precision in axes control is required. So a good encoder system design is essential to satisfy the requirements settled by the scientific goals. Today very good encode system are provided by several suppliers, with multiple readouts and error compensation capabilities into increase the reading precision and lessen the errors. Nevertheless during the lifetime of the system some unexpected errors can arise. In this paper some techniques to recognize, analyze and lessen the unavoidable encoder system error are described, with reference to some case studied.
The Galileo National Telescope is a 3.6 meter Alt-Az telescope installed at the Astronomical Observatory of the Roque de Los Muchachos in La Palma, Canary Islands. The Galileo drive and control systems were designed and developed by the Technology Working Group of the Capodimonte Astronomical Observatory, Naples. Apart from a short review of the drive system, the paper describes a novelty in the adaptive preload sub-system.
KEYWORDS: Control systems, Telescopes, Neural networks, Adaptive control, Space telescopes, Control systems design, Complex systems, Error analysis, Actuators, Matrices
Recently, neural network models (NN), such as the multilayer perceptron (MLP), have emerged as important components for applications of adaptive control theories. Their intrinsic generalization capability, based on acquired knowledge, together with execution rapidity and correlation ability between input stimula, are basic attributes to consider MLP as an extremely powerful tool for on-line control of complex systems. By a control system point of view, not only accuracy and speed, but also, in some cases, a high level of adaptation capability is required in order to match all working phases of the whole system during its lifetime. This is particularly remarkable for a telescope control system. In fact, strong changes in terms of system speed and instantaneous position error tolerance are necessary. In this paper we introduce the idea of a new approach (NVSPI, neural variable structure PI) related to the implementation of a MLP network in an Alt-Az telescope control system to improve the PI adaptive capability in terms of flexibility and accuracy of the dynamic response range.
The performance of on Alt-Az telescope depend strongly on its operating conditions. During pointing the telescope can move at a relatively high velocity, and the system can tolerate trajectory position errors higher than during tracking. On the contrary, during tracking Alt-Az telescopes generally move slower but still in a large dynamic range. In this case the position errors must be as close to zero as possible. Furthermore the two pointing and tracking phases are executed in sequence without a well defined switch phase between them. A fixed structure controller cannot optimize the telescope performance in terms of error amount in the whole requested dynamic range. On the contrary a digital controller has the ability to modify its structure and its parameter values during operations, according to the instantaneous error values, system status, system actual speed and system characterization. This paper analyzes the problem of tracking errors and the solutions adopted in a case study.
Object recognition is usually obtained by using some kind of different approach based on profile reconstruction, whose results are not always reliable or sufficient for a right object identification. The present paper describes an alternative method to profile calculation, based on color and surface information associated to the images. The method is also used to define the system typology on the basis of a detailed analysis of human instinctive behaviors associated to the task to be performed by the system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.