This presentation was first delivered at Photonics West 2020 on 3 February 2020 and has been included as part of this Digital Forum to enable scholarly dialogue. Please use the original citation when citing:
Proceedings Volume 11278, Ultrafast Phenomena and Nanophotonics XXIV; 112780O (2020) https://doi.org/10.1117/12.2543969
In semiconductors and semimetals, strong THz electric fields can induce a controlled coherent motion of the electrons in the conduction band, via ballistic excitation. In the first picoseconds after THz excitation, the nonlinearities induced by this coherent excitation prevail before more incoherent high field effects start dominating the nonlinear response. Disentangling these different nonlinear contributions with 2D THz spectroscopy, we follow the trajectory of the out-of-equilibrium electron population in low-bandgap semiconductor InSb and. We then extract information on the conduction band curvature and evaluate its anharmonicity and its anisotropy, close to the Gamma-point.
In semiconductors and semimetals, strong THz electric fields can induce a controlled coherent motion of the electrons in the conduction band, via ballistic excitation. In the first picoseconds after THz excitation, the nonlinearities induced by this coherent excitation prevail before more incoherent high field effects start dominating the nonlinear response. Disentangling these different nonlinear contributions with 2D THz spectroscopy, we follow the trajectory of the out-of-equilibrium electron population in low-bandgap semiconductor InSb and. We then extract information on the conduction band curvature and evaluate its anharmonicity and its anisotropy, close to the Gamma-point.
We review recent experiments on the fast and ultrafast all-optical control of light in bulk nematic and smectic-A liquid
crystals. Ultrafast optical control at sub-picosecond time scalecan be achieved via the optical Kerr response of a nematic
liquid crystal. We show that the refractive index changes are of the order of 10-4 in 5CB nematic liquid crystal and can be
optically induced by applying 100 fs pulses of 4 mJ/cm2 fluence. We discuss stimulated emission depletion of
fluorescence in a smectic-A liquid crystal and demonstrate nanosecond light control of fluorescent pulse shaping. Both
methods could be applied to control light by light in future photonic devices based on liquid crystals.
We investigate the light-induced magnetization reversal in samples of rare-earth transition metal alloys, where we aim to
spatially confine the switched region at the nanoscale, with the help of nano-holes in an Al-mask covering the sample.
First of all, an optimum multilayer structure is designed for the optimum absorption of the incident light. Next, using
finite difference time domain simulations we investigate light penetration through nano-holes of different diameter. We
find that the holes of 200 nm diameter combine an optimum transmittance with a localization better than λ/4. Further,
we have manufactured samples with the help of focused ion beam milling of Al-capped TbCoFe layers. Finally,
employing magnetization-sensitive X-ray holography techniques, we have investigated the magnetization reversal with
extremely high resolution. The results show severe processing effects on the switching characteristics of the magnetic
layers.
Skyrmions, which have originally been introduced to explain how baryons could topologically emerge from a continuous meson field, have found many exciting applications in condensed-matter physics, where they describe topological states of matter in a wide range of systems. In magnetic materials they emerge as excitations corresponding to a spin arrangement in which the spins point in all the directions wrapping a sphere. Skyrmions have indeed been observed in chiral magnets, where they form regular lattices and are stabilized under an external magnetic field thanks to the presence of the Dzyaloshinskii-Moriya interaction (DMI). More recently, a new mechanism of Skyrmion materialization has been proposed, in which the frustration introduced in a thin ferromagnetic film by the magnetic dipole-dipole interaction leads to the stabilization of Skyrmions larger than those stabilized by DMI, consisting of magnetic domains at the center of which the magnetization points out of the film plane in the opposite direction with respect to the magnetization of the surrounding material. We report about the real-space observation by means of near-field optical Faraday microscopy of such stable Skyrmions in a thin TbFeCo film. The Skyrmions are generated after local excitation of the magnetic system by means of an intense laser pulse and do not need an external magnetic field for stabilization. The unique combination of ultrashort laser-induced magnetic excitation with subdiffraction near-field optical microscopy allows us not only to produce and observe Skyrmions as individual entities, but to also create and characterize bound Skyrmion-antiSkyrmion pairs, forming a topologically neutral entity.
We explore the possibility to control the polarization state of light confined into sub-diffraction volumes by means of
plasmonic optical antennas. To this aim, we describe a resonant cross antenna, constituted of two perpendicular two-wire
antennas sharing the same gap, which is able to maintain the polarization state in the plane of the antenna. We also
discuss how, by proper tuning of the arm length in a slightly off-resonance cross antenna, it is possible to effectively
realize a nanoscale quarter-waveplate antenna. We present experimental results for the preparation of individual cross
antennas by means of focused ion beam milling starting from single-crystalline Au microflakes, and finally show
preliminary characterization results based on two-photon photoluminescence confocal imaging with linearly-polarized
light.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.