In high power laser facilities, phase modulation is required to broaden the laser spectrum, suppressing the SBS buildup in large optics. Spectral fail-safe module is responsible to monitor the spectral bandwidth of every pulse and inhibits the pulse to propagate if phase modulation fails. We demonstrate a multi-color fail-safe module, intentionally induces FM-to-AM conversion on the monitored laser with a fiber filter to convert GHz phase modulation into GHz amplitude modulation that can be measured with an AM detector. By choosing proper fiber filter parameters, the module is applicable to high-power lasers with multiple center wavelengths. In experiment, we achieved fail-safe condition within 1nm detection bandwidth, which can be even larger if a wider bandwidth fiber filter is used. In addition, this module has the advantage to work without temperature control, making it more practical for high-power laser facilities.
A frequency-doubling optoelectronic oscillator (OEO) using two cascaded modulators based on destructive interference is proposed and experimentally demonstrated. In the proposed system, we utilize a cascaded modulator including a phase modulator and an intensity modulator, which implements a carrier-suppressed double-sideband modulation based on destructive interference to generate a frequency-doubled microwave signal. Meanwhile, the phase modulator is connected by a chirp fiber Bragg grating in the loop, which forms a microwave photonic filter to select the fundamental frequency signal in the OEO loop. As a result, a frequency-doubled microwave signal at 17.9 and 20.5 GHz is generated, respectively. The phase noises and the long-term stability of the generated microwave signals are also investigated.
A high resolution optical time domain reflectometry (OTDR) based on an all-fiber chaotic source is demonstrated. We analyze the key factors limiting the operational range of such an OTDR, e.g., integral Rayleigh backscattering and the fiber loss, which degrade the optical signal to noise ratio at the receiver side, and then the guideline for counter-act such signal fading is discussed. The experimentally demonstrated correlation OTDR presents ability of 100km sensing range and 8.2cm spatial resolution (1.2 million resolved points), as a verification of the theoretical analysis. To the best of our knowledge, this is the first time that correlation OTDR measurement is performed over such a long distance with such high precision.
We propose a high-resolution optical time domain reflectometry (OTDR) based on an all-fiber supercontinuum source. The source simply consists of a laser with moderate power and a section of fiber which has a zero dispersion wavelength near the laser’s central wavelength. Spectrum and time domain properties of the source are investigated, showing that the source has great capability in nonlinear optics, such as correlation OTDR. We analyze one of the key factors limiting the operational range of such an OTDR, i.e., sampling time. Finally, we experimentally demonstrate a correlation OTDR with 25km sensing range and 5.3cm spatial resolution, as a verification of theoretical analysis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.