Recent research in manufacturing plastic scintillators via photopolymerization has reported various non-aromatic acrylic-based resins for easy 3D printing. However, the absence of traditionally used aromatic matrices, such as polystyrene or poly(vinyl toluene) (PVT), resulted in a limited scintillation performance. In this research, the feasibility of accommodating a high ratio of PVT with pentaerythritol tetraacrylate was demonstrated by the synthesis of plastic scintillators with efficient pulse shape discrimination. Moreover, the research described the understanding of the current inferior performance of photocured plastics compared to thermally cured analogs and showed 3D printability of studied resins in different shapes.
Recent material advancements in plastic scintillators enable marked increases in material light yield, detection efficiency, pulse-shape discrimination, and array production rates. These advances may resolve significant capability gaps for lowcost, portable, and durable dual-particle imaging (DPI) systems for nuclear safety, security and safeguard purposes. Two such materials, both 21% bismuth-loaded plastics utilizing iridium complex fluorophores (Ir-Bi-Plastic) were experimentally evaluated for DPI purposes as a small, pixelated radiographic array and compared to similar arrays made from EJ-200 and EJ-256 (5 wt% Pb). Experimentation involved separate exposures to 370 kVp x-rays and 14.1 MeV neutrons when paired with a digital radiographic panel, and array performance was evaluated using ASTM methods for dSNRn determination. Additionally, the development of fast-curing plastic scintillator (FCPS) formulations is highly attractive because it facilitates the 3D-printing of complete pixelated plastic scintillator arrays for radiation detection and localization. Future advancements in this area will significantly reduce the time and costs associated with current array manufacturing techniques. Some early investigations of FCPS samples sensitized with 5 wt% Bi is discussed herein, with their gamma detection efficiencies and associated light yields compared to an equivalent sample of EJ-256. These early unoptimized samples provided similar but not superior performance to EJ-256, and this is an ongoing area of research at the Air Force Institute of Technology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.