METIS is one the first three instruments on the E-ELT. Apart from diffraction limited imaging, METIS will provide coronagraphy and medium resolution slit spectroscopy over the 3 – 19μm range, as well as high resolution (R ~ 100,000) integral field spectroscopy from 2.9 – 5.3μm, including a mode with extended instantaneous wavelength coverage. The unique combination of these observing capabilities, makes METIS the ideal instrument for the study of circumstellar disks and exoplanets, among many other science areas. In this paper we provide an update of the relevant science drivers, the METIS observing modes, the status of the simulator and the data analysis. We discuss the preliminary design of the optical system, which is driven by the need to calibrate observations at thermal IR wavelengths on a six-mirror ELT. We present the expected adaptive optics performance and the measures taken to enable high contrast imaging. We describe the opto-mechanical system, the location of METIS on the Nasmyth instrument platform, and conclude with an update on critical subsystem components, such as the immersed grating and the focal plane detectors. In summary, the work on METIS has taken off well and is on track for first light in 2025.
MICADO will be the first-light wide-field imager for the European Extremely Large Telescope (E-ELT) and will provide diffraction limited imaging (7mas at 1.2mm) over a ~53 arc-second field of view. In order to support various consortium activities we have developed a first version of SimCADO: an instrument simulator for MICADO. SimCADO uses the results of the detailed simulation efforts conducted for each of the separate consortium-internal work packages in order to generate a model of the optical path from source to detector readout. SimCADO is thus a tool to provide scientific context to both the science and instrument development teams who are ultimately responsible for the final design and future capabilities of the MICADO instrument. Here we present an overview of the inner workings of SimCADO and outline our plan for its further development.
Michael Mach, Rainer Köhler, Oliver Czoske, Kieran Leschinski, Werner Zeilinger, Wolfgang Kausch, Thorsten Ratzka, Martin Leitzinger, Robert Greimel, Norbert Przybilla, Veronika Schaffenroth, Manuel Güdel, Bernhard Brandl
We present the current status of the design of the science data reduction pipeline and the corresponding dataflow system for METIS. It will be one of the first three instruments for the E-ELT and work at wavelengths between 3-19 μm (L/M/N/Q1 bands). We will deliver software which is compliant to standards of the European Southern Observatory (ESO), and will employ state of the art techniques to produce science grade data, master calibration frames, quality control parameters and to handle instrument effects. The Instrument currently offers a wealth of observing modes that are listed in this paper. Data reduction for a ground based instrument at these wavelengths is particularly challenging because of the massive influence of thermal radiation from various sources. We will give a comprehensive overview of the data ow system for the imaging modes that the instrument offers and discuss a single recipe versus a multi recipe approach for the different observing modes for imaging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.