The demand for transparent conductive films (TCFs) is dramatically increasing. In this work tungsten oxide (WO3-x) is studied as a possible option additional to the existed TCFs. We introduce WO3-x thin films fabricated by a non-reactive magnetron RF-sputtering process at room temperature, followed by thermal annealing in dry air. Films are characterized morphologically, structurally, electrically, optically, and dielectrically. Amorphous WO3-x thin films are shown to be n-type conductive while the transparency extends to the near-IR. By evaluating a figure of merit for transparent-conductive performance and comparing to some most-widely used TCFs, WO3-x turns out to outperform in the near-IR optical range
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.