MOSAIC is a wide-field spectrograph, combining multiple-object spectroscopy and integral field units, to cover the ELT focal plane with a field-of-view of 7.8 arcmin from the blue to the near-infrared, 390 to 1800nm. In the current Phase B design, AO is GLAO supported by four LGS in a fixed asterism and with multiple NGS. Although the GLAO correction is modest compared to other ELT instrumentation, the use of the integrated M4/M5 correction elements and the existing LGS allows for an efficient design which is outlined. MOSAIC GLAO will use the ELT PFS guide-probes to compensate for high- frequency tip/tilt errors, greatly relaxing the requirements on the instrumental NGS sensors. The Phase A architecture used the same pick-off mirrors as the IFU instruments to feed the NGS-WFS from anywhere in the focal plane, which was mandatory for the proposed MOAO design. The reduced performance requirements at Phase B allows us to take advantage, instead, of the four 2 arcmin diameter field-of-view through the LGS cutouts, arranged in a square pattern at an off-axis distance of 3.75 arcmin. In each LGS cutout, a wide-field-imager is implemented–alongside one LGS WFS–to acquire multiple NGS that supports both slow tip/tilt measurements, isolating instrument-Nasmyth flexure, solving for the astrometric distortion expected from errors in the ELT optical path, and supporting the alignment of MOS apertures with the field. The latter is a key requirement for MOSAIC, leading to 40mas accuracy in MOS aperture positioning and 40mas rotation displacement at the edge of the scientific field.
MOSAIC is an instrument for the Extremely Large Telescope (ELT). The instrument has started phase B, and apart from technical and financial requirements, MOSAIC has the additional requirement to investigate and minimise its environmental impact. The first step is to estimate the carbon footprint (and other effects) in a ‘Life Cycle Analysis’, for the instrument development up to Provisional Acceptance in Chile. This paper presents a preliminary analysis, aimed at identifying potential contributors to environmental impact. Investigated contributors are: materials, Full-Time-Equivalents, travel, and transport of the instrument. Not yet investigated (due to lack of information or certainty) are: electronics, test facilities and prototyping. Uncertainty in input data and conversion factors leads to error bars of a factor 2 or larger. Therefore, the outcome of the analysis can be used for internal comparison of contributors only, and it should not be used for comparison to other instruments or disciplines.
MOSAIC is the Muti-Object Spectrograph for the 39m ESO Extremely Large Telescope. The instrument development has recently been reorganized in different channels to be implemented progressively. The Laboratoire d’Astrophysique de Marseille (LAM) is in charge of the instrument “Assembly, Integration, Test and Verification (AIT/V)” phases. AITV for AO instruments, in laboratory as at the telescope, always represent numerous technical challenges. We already started the preparation and planning for the instrument level AIT activities, from identification of needs, challenges, risks, to defining the optimal AIT strategy.
In this paper, we present the state of this study, discuss a new approach with distributed AIT activities and controlled remotely over different sites. We describe AIT/V scenarios with phased implementation, starting with the Front-End and Visible channels AIT phases. We also show our capacity, experience (several MOS instruments, ELT HARMONI) and expertise to lead the instrument MOSAIC AIT/V activities both in Europe and at the telescope in Chile.
MOSAIC is the Multi-Object Spectrograph (MOS) for the 39m Extremely Large Telescope (ELT) of the European Southern Observatory (ESO), with unique capabilities in terms of multiplex, wavelength coverage and spectral resolution. It is a versatile multi-object spectrograph working in both the Visible and NIR domains, designed to cover the largest possible area (∼40 arcmin2) on the focal plane, and optimized to achieve the best possible signal-to-noise ratio on the faintest sources, from stars in our Galaxy to galaxies at the epoch of the reionization. In this paper we describe the main characteristics of the instrument, including its expected performance in the different observing modes. The status of the project will be briefly presented, together with the positioning of the instrument in the landscape of the ELT instrumentation. We also review the main expected scientific contributions of MOSAIC, focusing on the synergies between this instrument and other major ground-based and space facilities.
The Multi Object Optical and Near-infrared Spectrograph (MOONS) instrument is the next generation multi-object spectrograph for the Very Large Telescope (VLT). The instrument combines the high multiplexing capability offered by 1000 optical fibres deployed by individual robotic positioners with a novel spectrograph able to provide both low- and high-resolution spectroscopy simultaneously across the wavelength range 0.64μm - 1.8μm. Powered by the collecting area of the 8-m VLT, MOONS will provide the astronomical community with a world-leading facility able to serve a wide range of Galactic, Extragalactic and Cosmological studies. This paper provides an updated overview of the instrument and its construction progress, reporting on the ongoing integration phase.
MOSAIC is the Multi-Object Spectrograph for the ESO Extremely Large Telescope, approved to enter Phase B beginning 2022. It is conceived as a multi- purpose instrument covering the Visible and Near Infrared bandwidth (0.45 –1.8 μm) with two observing modes: spatially resolved spectroscopy with 8 integral field units; and the simultaneous observation of 200 objects in the VIS and NIR in unresolved spectroscopy.
We present an overview of the main MOSAIC science drivers and the actual baseline design for the instrument. The prototyping and developments undertaken by the consortium to evaluate the feasibility of the project are also discussed.
MOSAIC is the Muti-Object Spectrograph for the ESO Extremely Large Telescope. The Laboratoire d’Astrophysique de Marseille (LAM) is in charge of the instrument “Assembly, Integration, Test and Verification (AIT/V)” phases. AITV for AO instruments, in laboratory as in the telescope, always represent numerous technical challenges. We already started the preparation and planning for the instrument level AIT activities, from identification of needs, challenges, risks, to defining the optimal AIT strategy. In this paper, we present the state of this study and describe several AIT/V scenarios and a planning for AIT phases in Europe and in Chile. We also show our capacity, experience and expertise to lead the instrument MOSAIC AIT/V activities.
HARMONI is the first light visible and near-infrared (NIR) integral field spectrograph for the Extremely Large Telescope(ELT). The HARMONI spectrograph will have four near-infrared cameras and two visible, both with seven lenses of various materials and diameters ranging from 286 to 152 mm. The lens mounts design has been optimized for each lens material to compensate for thermal stresses and maintain lens alignment at the operational temperature of 130 K. We discuss their design and mounting concept, as well as assembly and verification steps. We show initial results from two prototypes and outline improvements in the mounting procedures to reach tighter lens alignments. To conclude, we present a description of our future work to measure the decentering of the lenses when cooled down and settled.
HARMONI is the adaptive optics assisted, near-infrared and visible light integral field spectrograph for the Extremely Large Telescope (ELT). A first light instrument, it provides the work-horse spectroscopic capability for the ELT. As the project approaches its Final Design Review milestone, the design of the instrument is being finalized, and the plans for assembly, integration and testing are being detailed. We present an overview of the instrument’s capabilities from a user perspective, provide a summary of the instrument’s design, including plans for operations and calibrations, and provide a brief glimpse of the predicted performance for a specific observing scenario. The paper also provides some details of the consortium composition and its evolution since the project commenced in 2015.
HARMONI is the first light visible and near-IR integral field spectrograph for the ELT. It covers a large spectral range from 450nm to 2450nm with resolving powers from R (≡λ/Δλ) 3500 to 18000 and spatial sampling from 60mas to 4mas. It can operate in two Adaptive Optics modes - SCAO (including a High Contrast capability) and LTAO - or with NOAO. The project is preparing for Final Design Reviews. The instrument uses a field splitter and image slicer to divide the field into 4 sub-units, each providing an input slit to one of four nearly identical spectrographs. This proceeding presents the final opto- mechanical design and the AIV plan of the spectrograph units.
The Multi Object Optical and Near-infrared Spectrograph (MOONS) instrument is the next generation multi-object spectrograph for the VLT. This powerful instrument will combine for the first time: the large collecting power of the VLT with a high multipexing capability offered by 1000 optical fibres moved with individual robotic positioners and a novel, very fast spectrograph able to provide both low- and high-resolution spectroscopy simultaneously across the wavelength range 0.64μm - 1.8μm. Such a facility will provide the astronomical community with a powerful, world-leading instrument able to serve a wide range of Galactic, Extragalactic and Cosmological studies. Th final assembly, integration and verification phase of the instrument is now about to start performance testing.
The High Angular Resolution Monolithic Optical and Near-infrared Integral field spectrograph (HARMONI) will be one of the instruments installed on ESO's 39-meter Extremely Large Telescope (ELT) at first light. The instrument will operate from 0.47 - 2.45 μm with Δλ/λ = 3,000 - 17,000. On-sky spatial pixels (spaxels) are divided between four spectrographs, each equipped with 11 transmission diffraction gratings to cover the ranges of wavelengths and spectral resolutions. These spectrographs will be cooled to ~140 K to decrease thermal radiation at longer wavelengths.
In all configurations, the diffraction grating will lose a greater fraction of scientific light than any other single optic in the instrument. Additionally, manufacturers are often unable to measure the fraction of transmitted light at HARMONI's longest wavelengths. For these reasons, we have developed a setup to measure the efficiencies of transmission diffraction gratings across HARMONI's bandpass. The setup uses modulated signals, a single detector, and a lock-in amplifier to minimize sources of systematic errors. A modified version of this setup may be used to measure stray light. These setups and initial results are presented.
After completion of its final-design review last year, it is full steam ahead for the construction of the MOONS instrument - the next generation multi-object spectrograph for the VLT. This remarkable instrument will combine for the first time: the 8 m collecting power of the VLT, 1000 optical fibres with individual robotic positioners and both medium- and high-resolution spectral coverage acreoss the wavelength range 0.65μm - 1.8 μm. Such a facility will allow a veritable host of Galactic, Extragalactic and Cosmological questions to be addressed. In this paper we will report on the current status of the instrument, details of the early testing of key components and the major milestones towards its delivery to the telescope.
HARMONI is an Integral Field Spectrograph (IFS) for ESO’s ELT. It has been selected as the first light spec- trograph and will provide the workhorse spectroscopic capabilities for the ELT for many years. HARMONI is currently at the PDR-level and the current design for the HARMONI IFS consists of a number of spaxel scales sampling down to the diffraction limit of the telescope. It uses a field splitter and image slicer to divide the field into 4 sub-units, each providing an input slit to one of four nearly identical spectrographs. All spectrographs will operate at near infrared wavelengths (0.81-2.45 micrometers), sampling different parts of the spectrum with a range of spectral resolving powers (3300, 7000, 18000). In addition, two of the four spectrographs will have a Visible capability (0.5-0.83 micrometers) operating with seeing-limited observations. This proceeding presents an overview of the opto-mechanical design and specifications of the spectrograph units for HARMONI.
Following a successful Phase A study, we introduce the delivered conceptual design of the MOSAIC1 multi-object spectrograph for the ESO Extremely Large Telescope (ELT). MOSAIC will provide R~5000 spectroscopy over the full 460-1800 nm range, with three additional high-resolution bands (R~15000) targeting features of particular interest. MOSAIC will combine three operational modes, enabling integrated-light observations of up to 200 sources on the sky (high-multiplex mode) or spectroscopy of 10 spatially-extended fields via deployable integral-field units: MOAO6 assisted high-definition (HDM) and Visible IFUs (VIFU). We will summarise key features of the sub-systems of the design, e.g. the smart tiled focal-plane for target selection and the multi-object adaptive optics used to correct for atmospheric turbulence, and present the next steps toward the construction phase.
We present the consolidated scientific case for multi-object spectroscopy with the MOSAIC concept on the European ELT. The cases span the full range of ELT science and require either ‘high multiplex’ or ‘high definition’ observations to best exploit the excellent sensitivity and wide field-of-view of the telescope. Following scientific prioritisation by the Science Team during the recent Phase A study of the MOSAIC concept, we highlight four key surveys designed for the instrument using detailed simulations of its scientific performance. We discuss future ways to optimise the conceptual design of MOSAIC in Phase B, and illustrate its competitiveness and unique capabilities by comparison with other facilities that will be available in the 2020s.
HARMONI (High Angular Resolution MOnolithic Integral field spectrograph)1 is a planned first-light integral field spectrograph for the Extremely Large Telescope. The spectrograph sub-system is being designed, developed, and built by the University of Oxford. The project has just completed the Preliminary Design Review (PDR), with all major systems having nearly reached a final conceptual design. As part of the overall prototyping and assembly, integration, and testing (AIT) of the HARMONI spectrograph, we will be building a full-scale engineering model of the spectrograph. This will include all of the moving and mechanical systems, but without optics. Its main purpose is to confirm the AIT tasks before the availability of the optics, and the system will be tested at HARMONI cryogenic temperatures. By the time of the construction of the engineering model, all of the individual modules and mechanisms of the spectrograph will have been prototyped and cryogenically tested. The lessons learned from the engineering model will then be fed back into the overall design of the spectrograph modules ahead of their development.
KEYWORDS: Spectrographs, Sensors, Infrared sensors, Systems engineering, Iterated function systems, Control systems, Astronomy, Visible radiation, Electronics, Software development
In this paper we will describe how the development (design, build, integration, verification and installation) of a technically compliant Integral Field Spectrograph (IFS) can be planned and executed. Firstly we will show how one would develop the product breakdown structure (PBS) making use of a structured function-based systems engineering methodology based on systems thinking. The product breakdown structure is one of the primary outputs (deliverables) of the systems architecture design process and is a hierarchy of products implementing the physical architecture of the system. The system physical architecture is developed by implementing all the functions required over the life-time of the system in hardware and software. To finalise the system architecture the control and data flow to perform the required functions in the correct sequence will also need to be considered and implemented.
Once the system architecture has been developed it can be partitioned into a hierarchical product breakdown structure consisting of sub-systems, modules, assemblies, sub-assemblies, and components. Thereafter the product breakdowns structure can be partitioned into a logical work breakdown structure. By using the knowledge and understanding of the development workflows for each of the engineering disciplines required, a single product and work breakdown structure can be used to develop a robust project schedule. In addition, we will show how the processes of configuration management (CMII) are used to integrate the work elements of the various engineering disciplines into a coherent project plan to finalise the designs of parts, modules, assemblies, sub-systems or systems to a level where these parts can either be made or procured for further assembly and integration. Using project planning software such as Microsoft Project, the general shape and critical path of the project can be determined.
Typically, the development of ground based and space astronomical facilities are stretched over many years, even decades. Therefore it is easy to waste a lot of time during the early development phases of the project on nugatory and non-essential tasks. We have adopted the Agile software development methodology to prepare, execute and monitor short term plans (sprints) to ensure progress is being made and that all work elements contributes to the end goal of the project.
We illustrate how these novel techniques have and still are being used in the development of the HARMONI Integral Field Spectrograph. HARMONI was selected as one of the Extremely Large Telescope (ELT) first light instruments. The ELT will be the European Southern Observatory’s (ESO) next generation telescope and observatory and will be built in Chile on Cerra Armazones. The instrument completed its preliminary design phase and the team is now detailing the designs as part of the detailed design phase of the project.
A major objective of this paper is also to show that one single structure, namely the product breakdown structure, is all that is required to plan the development, construction, verification and validation, installation and commissioning of any scientific product. By associating the engineering artefacts required to either procure or build each of the components a robust project time-line can be develop by creating integrated work flows covering all the tasks required to progress the system from conception to a working instrument on sky.
MOSAIC is a concept for a multi-object spectrograph for the Extremely Large Telescope (ELT). It is planned to cover the wavelength range from 460 nm to 1800 nm with 5 visible spectrographs and 5 near-infrared spectrographs. The ELT is far from diffraction limited in the visible wavelength range. Rather than developing a large and complex AO system, it was decided that the instrument will be seeing limited in the visible. Spot sizes are therefore about 2.8 mm in diameter in the ELT focal plane, and need to be sampled by multiple fibers with large core diameter. As a result, large optics is required to achieve the science requirements on spectral resolution, bandwidth and multiplex. We work in close collaboration with manufacturers to design an instrument that is feasible and meets the scientific requirements.
Product Assurance is an essential activity to support the design and construction of complex instruments developed for major scientific programs. The international size of current consortia in astrophysics, the ambitious and challenging developments, make the product assurance issues very important. The objective of this paper is to focus in particular on the application of Product Assurance Activities to a project such as MOSAIC, within an international consortium. The paper will also give a general overview on main product assurance tasks to be implemented during the development from the design study to the validation of the manufacturing, assembly, integration and test (MAIT) process and the delivery of the instrument.
When combined with the huge collecting area of the ELT, MOSAIC will be the most effective and flexible Multi-Object Spectrograph (MOS) facility in the world, having both a high multiplex and a multi-Integral Field Unit (Multi-IFU) capability. It will be the fastest way to spectroscopically follow-up the faintest sources, probing the reionisation epoch, as well as evaluating the evolution of the dwarf mass function over most of the age of the Universe. MOSAIC will be world-leading in generating an inventory of both the dark matter (from realistic rotation curves with MOAO fed NIR IFUs) and the cool to warm-hot gas phases in z=3.5 galactic haloes (with visible wavelenth IFUs). Galactic archaeology and the first massive black holes are additional targets for which MOSAIC will also be revolutionary. MOAO and accurate sky subtraction with fibres have now been demonstrated on sky, removing all low Technical Readiness Level (TRL) items from the instrument. A prompt implementation of MOSAIC is feasible, and indeed could increase the robustness and reduce risk on the ELT, since it does not require diffraction limited adaptive optics performance. Science programmes and survey strategies are currently being investigated by the Consortium, which is also hoping to welcome a few new partners in the next two years.
The amplitudes and scales of spatial variations in the skylines can be a potential limit of the telescopes performance, because the study of the extremely faint objects requires a careful correction for the residual of the skylines if they are corrected. Using observations from the VLT/KMOS instrument, we have studied the spatial and temporal behavior of two faint skylines (10 to 80 times fainter than the strong skyline in the spectral window) and the effect of the skylines in the determination of the kinematics maps of distant galaxies. Using nine consecutives exposures of ten minutes. We found that the flux of the brighter skylines changes rapidly spatially and temporally, 5 to 10% and up to 15%, respectively. For the faint skyline, the fluctuations have a spatial and temporal amplitude up to 100%. The effect of the residual of the skyline on the velocity field of distant galaxies becomes dramatic when the emission line is faint (equivalent width equal to 15 A). All the kinematic information is lost. The shape and the centroid of the emission line change from spaxel to spaxel. This preliminary result needs to be extended; by continuing the simulation, in order to determine, the minimum flux that allows to recover of the kinematic information at different resolutions. Allowing to find the possible relation between spectral resolution and flux of the emission line. Our goal is to determine which is the best spectral resolution in the infrared to observe the distant galaxies with integral field spectrographs. Finding the best compromise between spectral resolution and the detection limit of the spectrograph.
KEYWORDS: Space telescopes, Spectrographs, Spectroscopes, Telescopes, Galactic astronomy, K band, Spectral resolution, James Webb Space Telescope, Visible radiation, Sensors
Building on the comprehensive White Paper on the scientific case for multi-object spectroscopy on the European ELT, we present the top-level instrument requirements that are being used in the Phase A design study of the MOSAIC concept. The assembled cases span the full range of E-ELT science and generally require either ‘high multiplex' or 'high definition' observations to best exploit the excellent sensitivity and spatial performance of the telescope. We highlight some of the science studies that are now being used in trade-off studies to inform the capabilities of MOSAIC and its technical design.
We present a discussion of the design issues and trade-offs that have been considered in putting together a new concept for MOSAIC,1, 2 the multi-object spectrograph for the E-ELT. MOSAIC aims to address the combined science cases for E-ELT MOS that arose from the earlier studies of the multi-object and multi-adaptive optics instruments (see MOSAIC science requirements in [3]). MOSAIC combines the advantages of a highly-multiplexed instrument targeting single-point objects with one which has a more modest multiplex but can spatially resolve a source with high resolution (IFU). These will span across two wavebands: visible and near-infrared.
We present a new scientific instrument simulator dedicated to the E-ELT named WEBSIM-COMPASS, and developed in the frame of the COMPASS project. This simulator builds on the previous series of WEBSIM simulators developed during the ESO E-ELT Design Reference Mission and Instrument Phase A studies. The WEBSIM-COMPASS observations simulator consists in a web interface coupled to an IDL code, which allows the user to perform end-to-end simulations of all E-ELT optical/NIR imagers and spectrographs foreseen for the future 39m European Extremely Large Telescope, i.e., MICADO, HARMONI, and MOSAIC. The simulation pipeline produces fake simulations in FITS format that mimic the result of a data reduction pipeline with perfectly extracted/reduced data. We give a functional description of this new simulator, emphasizing the new functionalities and current developments, and present science cases simulated used as test cases.
KEYWORDS: Adaptive optics, Spectrographs, Telescopes, James Webb Space Telescope, Adaptive optics, Galactic astronomy, Molybdenum, K band, Space telescopes, Near infrared, Spectral resolution
There are 8000 galaxies, including 1600 at z ≥ 1.6, which could be simultaneously observed in an E-ELT field of view of 40 arcmin2. A considerable fraction of astrophysical discoveries require large statistical samples, which can only be obtained with multi-object spectrographs (MOS). MOSAIC will provide a vast discovery space, enabled by a multiplex of 200 and spectral resolving powers of R=5000 and 20000. MOSAIC will also offer the unique capability of more than 10 `high-definition' (multi-object adaptive optics, MOAO) integral-field units, optimised to investigate the physics of the sources of reionization. The combination of these modes will make MOSAIC the world-leading MOS facility, contributing to all fields of contemporary astronomy, from extra-solar planets, to the study of the halo of the Milky Way and its satellites, and from resolved stellar populations in nearby galaxies out to observations of the earliest ‘first-light’ structures in the Universe. It will also study the distribution of the dark and ordinary matter at all scales and epochs of the Universe. Recent studies of critical technical issues such as sky-background subtraction and MOAO have demonstrated that such a MOS is feasible with state-of-the-art technology and techniques. Current studies of the MOSAIC team include further trade-offs on the wavelength coverage, a solution for compensating for the non-telecentric new design of the telescope, and tests of the saturation of skylines especially in the near-IR bands. In the 2020s the E-ELT will become the world's largest optical/IR telescope, and we argue that it has to be equipped as soon as possible with a MOS to provide the most efficient, and likely the best way to follow-up on James Webb Space Telescope (JWST) observations.
MOSAIC is the proposed multiple-object spectrograph for the E-ELT that will utilise the widest possible field of view provided by the telescope. In terms of adaptive optics, there are two distinct operating modes required to meet the top-level science requirements. The MOSAIC High Multiplex Mode (HMM) requires either seeing-limited or GLAO correction within a 0.6 (NIR) and 0.9 (VIS) arcsecond sub-fields over the widest possible field for a few hundred objects. To achieve seeing limited operation whilst maintaining the maximum unvignetted field of view for scientific observation will require recreating some of the functionality present in the Pre-Focal Station relating to control of the E-ELT active optics. MOSAIC High Definition Mode Control (HDM) requires a 25% Ensquared Energy (EE) within 150mas in the H-band element for approximately 10 targets distributed across the full E-ELT field, implying the use of Multiple Object AO (MOAO). Initial studies have shown that to meet the EE requirements whilst maintaining high-sky coverage will require the combination of wavefront signals from both high-order NGS and LGS to provide a tomographic estimate for the correction to be applied to the open-loop MOAO DMs. In this paper we present the current MOSAIC AO design and provide the first performance estimates for the baseline instrument design. We then report on the various trade-offs that will be investigated throughout the course of the Phase A study, such as the requirement to mix NGS and LGS signals tomographically. Finally, we discuss how these will impact the AO architecture, the MOSAIC design and ultimately the scientific performance of this wide-field workhorse instrument at the E-ELT.
Paranal Observatory has a department called Science Operations (SciOps), which is in charge of operating the instruments within the global scheme established for the Very Large Telescope. This scheme was improved on what was called SciOps 2.0. The main operational goals of this new scheme were to strengthen the coordination of science operations activities within, and between, the department groups, by increasing the time allocated to “high-level” activities. It also improves the efficiency of the core science operations support to service mode (SM) and visitor mode (VM) observations, and the quality of the astronomical data delivered to the community of Paranal users.
In this context of efficiency and quality improvement of operations within the SciOps department, we had identified a strong need to optimize the management of daily operation tasks, via the development of a daily activity monitoring integrated tool, so this paper details the findings of the Daily Activity Monitoring Integrated Tool (DAMIT), the proof of Concept phase and the first delivered phase. The technical proof of concept was the first phase in development of a daily operation-monitoring tool for the science operations department. The primary objective of this phase was to evaluate the viability and impact of such a tool to improve the quality and efficiency of SciOps at Paranal.
This tool is running after overcoming the first phase of development, after followed an on-site technical analysis of the SciOps daily operation (day and night), the current procedures to certify the completeness and quality of the daily operations, and requirements for this new daily operation monitoring tool.
Fiber-fed spectrographs can now have throughputs equivalent to slit spectrographs. However, the sky
subtraction accuracy that can be reached on such instruments has often been pinpointed as one of their major
issues, in relation to difficulties in scattered light and flat-field corrections or throughput losses associated
with fibers. Using technical time observations with FLAMES-GIRAFFE, two observing techniques, namely
dual staring and cross beam switching modes, were tested and the resulting sky subtraction accuracy reached
in both cases was quantified. Results indicate that an accuracy of 0.6% on the sky subtraction can be reached,
provided that the cross beam switching mode is used. This is very encouraging regarding the detection of very
faint sources with future fiber-fed spectrographs such as VLT/MOONS or E-ELT/MOSAIC.
The Universe is comprised of hundreds of billions of galaxies, each populated by hundreds of billions of stars. Astrophysics aims to understand the complexity of this almost incommensurable number of stars, stellar clusters and galaxies, including their spatial distribution, formation, and current interactions with the interstellar and intergalactic media. A considerable fraction of astrophysical discoveries require large statistical samples, which can only be addressed with multi-object spectrographs (MOS). Here we introduce the MOSAIC study of an optical/near-infrared MOS for the European Extremely Large Telescope (E-ELT), which has capabilities specified by science cases ranging from stellar physics and exoplanet studies to galaxy evolution and cosmology. Recent studies of critical technical issues such as sky-background subtraction and multi-object adaptive optics (MOAO) have demonstrated that such a MOS is feasible with current technology and techniques. In the 2020s the E-ELT will become the world’s largest optical/IR telescope, and we argue that it has to be equipped as soon as possible with a MOS. MOSAIC will provide a vast discovery space, enabled by a multiplex of ∼ 200 and spectral resolving powers of R = 5 000 and 20 000. MOSAIC will also offer the unique capability of 10-to-20 ‘high-definition’ (MOAO) integral-field units, optimised to investigate the physics of the sources of reionisation, providing the most efficient follow-up of observations with the James Webb Space Telescope (JWST). The combination of these modes will enable the study of the mass-assembly history of galaxies over cosmic time, including high-redshift dwarf galaxies and studies of the distribution of the intergalactic medium. It will also provide spectroscopy of resolved stars in external galaxies at unprecedented distances, from the outskirts of the Local Group for main-sequence stars, to a significant volume of the local Universe, including nearby galaxy clusters, for luminous red supergiants.
MOONS is a new Multi-Object Optical and Near-infrared Spectrograph selected by ESO as a third generation
instrument for the Very Large Telescope (VLT). The grasp of the large collecting area offered by the VLT (8.2m
diameter), combined with the large multiplex and wavelength coverage (optical to near-IR: 0.8μm - 1.8μm) of MOONS
will provide the European astronomical community with a powerful, unique instrument able to pioneer a wide range of
Galactic, Extragalactic and Cosmological studies and provide crucial follow-up for major facilities such as Gaia,
VISTA, Euclid and LSST. MOONS has the observational power needed to unveil galaxy formation and evolution over
the entire history of the Universe, from stars in our Milky Way, through the redshift desert, and up to the epoch of very
first galaxies and re-ionization of the Universe at redshift z>8-9, just few million years after the Big Bang. On a
timescale of 5 years of observations, MOONS will provide high quality spectra for >3M stars in our Galaxy and the
local group, and for 1-2M galaxies at z>1 (SDSS-like survey), promising to revolutionise our understanding of the
Universe.
The baseline design consists of ~1000 fibers deployable over a field of view of ~500 square arcmin, the largest patrol
field offered by the Nasmyth focus at the VLT. The total wavelength coverage is 0.8μm-1.8μm and two resolution
modes: medium resolution and high resolution. In the medium resolution mode (R~4,000-6,000) the entire wavelength
range 0.8μm-1.8μm is observed simultaneously, while the high resolution mode covers simultaneously three selected
spectral regions: one around the CaII triplet (at R~8,000) to measure radial velocities, and two regions at R~20,000 one
in the J-band and one in the H-band, for detailed measurements of chemical abundances.
MOONS is a new conceptual design for a Multi-Object Optical and Near-infrared Spectrograph for the Very Large
Telescope (VLT), selected by ESO for a Phase A study. The baseline design consists of ~1000 fibers deployable over a
field of view of ~500 square arcmin, the largest patrol field offered by the Nasmyth focus at the VLT. The total
wavelength coverage is 0.8μm-1.8μm and two resolution modes: medium resolution and high resolution. In the medium
resolution mode (R~4,000-6,000) the entire wavelength range 0.8μm-1.8μm is observed simultaneously, while the high
resolution mode covers simultaneously three selected spectral regions: one around the CaII triplet (at R~8,000) to
measure radial velocities, and two regions at R~20,000 one in the J-band and one in the H-band, for detailed
measurements of chemical abundances.
The grasp of the 8.2m Very Large Telescope (VLT) combined with the large multiplex and wavelength coverage of
MOONS – extending into the near-IR – will provide the observational power necessary to study galaxy formation and
evolution over the entire history of the Universe, from our Milky Way, through the redshift desert and up to the epoch
of re-ionization at z<8-9. At the same time, the high spectral resolution mode will allow astronomers to study chemical
abundances of stars in our Galaxy, in particular in the highly obscured regions of the Bulge, and provide the necessary
follow-up of the Gaia mission. Such characteristics and versatility make MOONS the long-awaited workhorse near-IR
MOS for the VLT, which will perfectly complement optical spectroscopy performed by FLAMES and VIMOS.
KEYWORDS: Fringe analysis, Galactic astronomy, Spectrographs, Data archive systems, Light scattering, Signal to noise ratio, Visualization, Data modeling, Image quality, Large telescopes
The detection and characterization of the physical properties of very distant galaxies will be one the prominent science case of all future Extremely Large Telescopes, including the 39m E-ELT. Multi-Object Spectroscopic instruments are potentially very important tools for studying these objects, and in particular fiber-based concepts. However, detecting and studying such faint and distant sources will require subtraction of the sky background signal (i.e., between OH airglow lines) with an accuracy of 1%. This requires a precise and accurate knowledge of the sky background temporal and spatial fluctuations. Using FORS2 narrow-band filter imaging data, we are currently investigating what are the fluctuations of the sky background at 9000A. We present preliminary results of sky background fluctuations from this study over spatial scales reaching 4 arcmin, as well as first glimpses into the temporal variations of such fluctuations over timescales of the order of the hour. This study (and other complementary on-going studies) will be essential in designing the next-generation fiber-fed instruments for the E-ELT.
The amplitudes and scales of spatial variations of the sky continuum background can be a potential limit of the telescope performance, because the study of the extremely faint objects requires the subtraction accuracy below 1%. Thus, studying its statistical properties is essential for the design of next generation instruments, especially the fiber-fed instruments, as well as their observation strategies. Using ESO archive data of VLT/FORS2 long-slit observations, we analyzed the auto-correlation function of the sky continuum. As preliminary results, we find that the sky continuum background has multi-scale spatial variations at scales from 2" to 150" with total amplitude of ~0.5%, for an given exposure time of 900s. This can be considered as the upper limit of sky continuum background variation over a field-of-view of few arcmins. The origin of these variations need further studies.
We present preliminary results on on-sky test of sky subtraction methods for fiber-fed spectrograph. Using
dedicated observation with FLAMES/VLT in I-band, we have tested the accuracy of the sky subtraction for 4
sky subtraction methods: mean sky, closest sky, dual stare and cross-beam switching. The cross beam-switching
and dual stare method reach accuracy and precision of the sky subtraction under 1%. In contrast to the commonly
held view in the literature, this result points out that fiber-fed spectrographs are adapted for the observations
of faint targets.
We present a new method to subtract sky light from faint object observations with fiber-fed spectrographs. The
algorithm has been developed in the framework of the phase A of OPTIMOS-EVE, an optical-to-IR multi-object
spectrograph for the future european extremely large telescope (E-ELT). The new technique overcomes the
apparent limitation of fiber-fed instrument to recover with high accuracy the sky contribution. The algorithm
is based on the reconstruction of the spatial fluctuations of the sky background (both continuum and emission)
and allows us to subtract the sky background contribution in an FoV of 7 × 7 arcmin2 with an accuracy of 1%
in the mono-fibers mode, and 0.3-0.4% for integral-field-unit observations.
P. Bonifacio, F. Arenou, C. Babusiaux, C. Balkowski, O. Bienaymé, D. Briot, E. Caffau, R. Carlberg, B. Famaey, P. François, Y. Frémat, A. Gomez, M. Haywood, V. Hill, D. Katz, R. Kudritzky, R. Lallement, P. de Laverny, B. Lemasle, C. Martayan, R. Monier, D. Mourard, N. Nardetto, A. Recio Blanco, N. Robichon, A. Robin, M. Rodrigues, Fr. Royer, C. Soubiran, C. Turon, K. Venn, Y. Viala
We present the scientific motivations for GYES: a high multiplex (of the order of several hundred), high resolution
(about 20 000), spectrograph to be placed at the prime focus of the CFHT. The main purpose of such an
instrument is to conduct a spectroscopic survey complementary to the Gaia mission. The final Gaia catalogue
(expected around 2020) will provide accurate distances, proper motions and spectrophotometry for all the stars
down to a magnitude of 20. The spectroscopic instrument on board the Gaia satellite will provide intermediate
resolution (R=11 500) spectra for stars down to the 17th magnitude. For the fainter stars there will be no radial
velocity information. For all the stars the chemical information will be limited to a few species. A multifibre
spectrograph at the prime focus of the CFHT will be able to provide the high resolution spectra for stars fainter
than 13th magnitude, needed to obtain both accurate radial velocities and detailed chemical abundances. The possible use of GYES will not be limited to Gaia complementary surveys and we here describe the potentialities
of such an instrument. We describe here how the scientific drivers are translated into technical requirements.
The results of our on-going feasibility study are described in an accompanying poster.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.