This paper designs an integrated optical system for detection and recognition. The system combines the R-C (Ritchey-Chretien optics) system and the zoom structure. The R-C mirror design of the initial structure of the system is completed by calculation of theory. Then, use the zoom theory to complete the design of the two zoom positions. The two zoom positions respectively realize the detection and identification of space debris. The F numbers are 5.86 and 11. The field of view angles are 2.83°and 0.6°. It works in band of 400-750nm. The system has an entrance pupil diameter of 300mm. The detection position can detect space debris with a brightness of 13 magnitude stars, with focal length of 1760mm; the recognition position’s modulation transfer function is greater than 0.6 at the Nyquist frequency of 33.33lp/mm, with the focal length of 3300mm. The zoom theory is well applied in the integrated detection and recognition system.
In order to deal with the threat of space debris to space experiment platforms and equipment, three-mirror anastigmatic system, which has the characteristics of light weight, small size and good optical performance, are used for space debris detection and detailed imaging. With the development of freeform surfaces, this article shows a new type of structure which has good optical performance and simple complexity of assembly and adjustment. The first step is to analyze the calculation method of the initial structure parameters of TMA system, and then the secondary mirror adopts the XY polynomial freeform surface. The primary mirror is reused as tertiary mirror, and the design of a new type TMA system is finally completed. Its effective focal length is 400 mm, the field of view (FOV) is 2°×4°, F/# is 5. At the Nyquist frequency 108lp/mm, the MTF value of this system is greater than 0.588. The maximum distortion is less than 0.80%. The results show that the imaging quality of the system meets the design requirements in the effective field of view.
There are different kinds of mirror in the space instrument. Sometimes, engineers use filling glue to fill the small gap of the lens and its frame. Thus the structure may be more stable. However, this kind of method could also bring some new problems. Because of different thermal expansion coefficient of the lens and frame, the thermal deformation may be different during the temperature change, which will affect the surface accuracy of the lens and the vibration response. The thickness of glue block and the distributed form of the glue are the key factors. The paper focused on these factors and did some simulations to find out how these factors affect the surface accuracy and fundamental frequency. Then, the paper gave some proposals on this issue.
In the process of restoring the image of space optical camera, it is necessary to use the standard 24 color card to correct the image. In order to improve the accuracy of the mapping function in the process of color correction and prevent the occurrence of overfitting at the same time, a neural network correction method with comprehensive objective function is proposed. Using the idea of regularization as a reference, a constraint term with smooth performance is added to the objective function of the neural network to improve the generalization ability of the network map to data. The experimental results on the dataset of the real color card of the space camera sho-ore the correction.
Proceedings Volume Editor (1)
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.