Targets located on the Precision Impact Range Area (PIRA) of Edwards AFB are used to evaluate imaging systems’ sensitivity and spatial resolution to ensure they meet specified requirements. Spectral Sciences, Inc., is developing a field-ready electro-optical sensor calibration/test system for airborne instruments from the visible through longwave infrared. This spectral region is particularly challenging because of the contributions from both solar and thermal fluxes. The system is composed of spectral-spatial ground targets and atmospheric characterization instruments. The design challenges for a new ground target installation applicable over short to long ranges and a broad optical spectrum include: 1) development of an innovative spectral-spatial, high contrast, high uniformity, knife edge target for determination of the spatial characteristics of the imaging system under test, such as the Modulation Transfer Function (MTF) and Relative Edge Response (RER), Noise Equivalent Temperature Difference (NETD), linearity and more; 2) development and implementation of a suite of auxiliary instruments to quantify the atmospheric effects, such as line-of-sight (LOS) turbulence, surface temperatures, humidity, and visibility; 3) development of targets with stable, quantifiable spectral response that can be used for evaluation for the spectral characteristics of multi- or hyperspectral imaging systems; and 4) engineering the target set for simplified long-term maintenance and durability. In this paper we report on the development of a prototype 2m by 2m thermally controlled knife edge target. The target is composed of four 1m by 1m panels each of which has independent temperature control and face surface materials which can be exchanged with other panel faces to produce patterns or spectral features. The full prototype system can be rotated and tipped to maximize the surface area apparent to a sensor system under test. The paper includes initial field measurements of the target array using visible, MWIR and LWIR imaging systems.
Two recent projects at Spectral Sciences Inc. have a goal of benefiting the calibration of overhead optical sensors. In the first, we have developed a vicarious calibration method that utilizes our MODTRAN software, the recognized standard for radiative transport. In the second, we are developing a new array of thermally controlled, square, spectrally characterized panels to support accurate calibration of imagers in the visible through long wavelength infrared (LWIR). Progress and results of both efforts will be described.
The THIA instrument is a visible through extended short-wave infrared (SWIR) imaging spectrometer. Designed using a solid block optical system and a single camera, the sensor is extremely compact with low power requirements. The spectrometer, manufactured by Corning, consists of reflective optical and grating surfaces diamond turned onto a single block of CaF2. The system has been flown repeatedly on a Matrice 600 hexacopter and on small aircraft for data collections. It operates from 0.4-2.45 microns, with high throughput due to the fast f/1.5 optics and has a total weight of 2.4 kg. THIA SNR was designed to exceed 100 over the full spectral range from 400 to 2450 nanometers under normal operating conditions and exceed 250 below 1700 nanometers. The first prototype system exhibits degraded throughput below 500 nanometers, but meets the SNR threshold over the rest of the range. Stray light backgrounds in the initial prototype require software correction. Despite these issues, the system has been used to obtain meaningful data. Here we characterize THIA Signal-to-Noise in flight conditions and compare results to predicted and benchtop performance.
A miniaturized, lightweight turn-key hyperspectral sensor package incorporating a single, monolithic spectrograph, telescope and navigation system is being built for airborne applications on small, Unmanned Aircraft Systems (UAS). The sensor is based on Corning’s existing MicroHSI 410 Vis/NIR Selectable Hyperspectral Airborne Remote sensing Kit (SHARK) currently used for airborne agricultural monitoring. Under DOE sponsorship, we are extending the approach to cover the full spectral range from 0.4-2.5 microns with a single spectrograph. This will enable rapid aerial surveys of vegetative mass, quality, and carbon sequestration. Other applications include mineralogy, agriculture, and intelligence/surveillance/reconnaissance (ISR).
The sensor features an Offner-type spectrograph machined from a single transmissive block. The monolithic construction provides an unprecedented combination of high performance, low cost and low size, weight, and power. It has an f/1.4 aperture, 5 nm resolution, and measures only 46mm x 60mm x 76mm. The spectrograph block is coupled to a sterling-cooled, back-thinned, HgCdTe FPA covering 0.4-2.5 micron spectral range. The flight package, including spectrograph, camera, telescope, and navigation system weighs less than 2.4kg and can fit on group 1 UASs.
In this paper, we present the design and optical performance of the sensor, and a detailed physical model of detection performance in standard, airborne hyperspectral sensing applications. At 100 Hz data rate, the sensor will achieve shotnoise limited performance with SNR > 250 from 0.4-1.7 microns and SNR<100 between 2-2.3 microns. Operating procedures for airborne monitoring of vegetative properties are also discussed. Initial test flights on a UAS are scheduled for next summer.
Vibration waveforms in materials appear in video as a minuscule fluctuation in the light scattered into the camera. By inferring from processed video how vibrational energy propagates through an article to be inspected, we may detect local material anomalies. We report progress in developing measurement protocols and technologies to perform standoff nondestructive inspection of materials for defects using video image processing. In particular we show promising results from a protocol that conforms to relatively inexpensive hardware.
A new, compact and portable spectral imaging camera, employing a MEMs-based encoded imaging approach, has been built and demonstrated for detection of hazardous contaminants including gaseous effluents and solid-liquid residues on surfaces. The camera is called the Thermal infrared Reconfigurable Analysis Camera for Effluents and Residues (TRACER). TRACER operates in the long wave infrared and has the potential to detect a wide variety of materials with characteristic spectral signatures in that region. The 30 lb. camera is tripod mounted and battery powered. A touch screen control panel provides a simple user interface for most operations. The MEMS spatial light modulator is a Texas Instruments Digital Microarray Array with custom electronics and firmware control. Simultaneous 1D-spatial and 1Dspectral dimensions are collected, with the second spatial dimension obtained by scanning the internal spectrometer slit. The sensor can be configured to collect data in several modes including full hyperspectral imagery using Hadamard multiplexing, panchromatic thermal imagery, and chemical-specific contrast imagery, switched with simple user commands. Matched filters and other analog filters can be generated internally on-the-fly and applied in hardware, substantially reducing detection time and improving SNR over HSI software processing, while reducing storage requirements. Results of preliminary instrument evaluation and measurements of flame exhaust are presented.
A second-generation long-wave hyperspectral imager based on micro-electro-mechanical systems (MEMS) technology is in development. Spectral and spatial encoding using a MEMS digital micro-mirror device enables fast, multiplexed data acquisition with arbitrary spectral response functions. The imager may be programmed to acquire spectrally selective contrast imagery, replacing more time-consuming hyperspectral data collection. A single-element detector collects encoded data and embedded real-time hardware generates imagery. An internal scanning mechanism enables rapid retrieval of full hyperspectral imagery. The resulting rugged, low-cost sensor will provide chemically specific imagery for applications in gaseous and surface contaminant detection, surveillance, remote sensing, and process control.
Field test results are presented for a prototype long-wave adaptive imager that provides both hyperspectral imagery and contrast imagery based on the direct application of hyperspectral detection algorithms in hardware. Programmable spatial light modulators are used to provide both spectral and spatial resolution using a single element detector. Programmable spectral and spatial detection filters can be used to superimpose any possible analog spectral detection filter on the image. In this work, we demonstrate three modes of operation, including hyperspectral imagery, and one and two-dimensional imagery using a generalized matched filter for detection of a specific target gas within the scene.
A dispersive transform spectral imager named FAROS (FAst Reconfigurable Optical Sensor) has been developed for
high frame rate, moderate-to-high resolution hyperspectral imaging. A programmable digital micromirror array (DMA)
modulator makes it possible to adjust spectral, temporal and spatial resolution in real time to achieve optimum tradeoff
for dynamic monitoring requirements. The system’s F/2.8 collection optics produces diffraction-limited images in the
mid-wave infrared (MWIR) spectral region. The optical system is based on a proprietary dual-pass Offner configuration
with a single spherical mirror and a confocal spherical diffraction grating. FAROS fulfills two functions simultaneously:
one output produces two-dimensional polychromatic imagery at the full focal plane array (FPA) frame rate for fast object
acquisition and tracking, while the other output operates in parallel and produces variable-resolution spectral images via
Hadamard transform encoding to assist in object discrimination and classification. The current version of the FAROS
spectral imager is a multispectral technology demonstrator that operates in the MWIR with a 320 x 256 pixel InSb FPA
running at 478 frames per second resulting in time resolution of several tens of milliseconds per hypercube. The
instrument has been tested by monitoring small-scale rocket engine firings in outdoor environments. The instrument has
no macro-scale moving parts, and conforms to a robust, small-volume and lightweight package, suitable for integration with
small surveillance vehicles. The technology is also applicable to multispectral/hyperspectral imaging applications in diverse
areas such as atmospheric contamination monitoring, agriculture, process control, and biomedical imaging, and can be
adapted for use in any spectral domain from the ultraviolet (UV) to the LWIR region.
KEYWORDS: Sensors, Digital micromirror devices, Imaging systems, Optical filters, Electronic filtering, Long wavelength infrared, Micromirrors, Interference (communication), Detection and tracking algorithms, Signal to noise ratio
Dispersive transform spectral imagers with both one- and two-dimensional spatial coverage have been demonstrated and
characterized for applications in remote sensing, target classification and process monitoring. Programmable spatial
light modulators make it possible to adjust spectral, temporal and spatial resolution in real time, as well as implement
detection algorithms directly in the digitally controlled sensor hardware. Operating parameters can be optimized in real
time, in order to capture changing background and target evolution. Preliminary results are presented for short wave,
mid-wave, and long-wave infrared sensors that demonstrate the spatial and spectral versatility and rapid adaptability of
this new sensor technology.
Optical sensors aboard space vehicles designated to perform seeker functions need to generate multispectral images in the mid-wave infrared (MWIR) and long-wave infrared (LWIR) spectral regions in order to investigate and classify man-made space objects, and to distinguish them relative to the interfering scene clutter. The spectral imager part of the sensor collects spectral signatures of the observed objects in order to extract information on surface emissivity and target temperature, both important parameters for object-discrimination algorithms. The Adaptive Spectral Imager described in this paper fulfills two functions simultaneously: one output produces instantaneous two-dimensional polychromatic imagery for object acquisition and tracking, while the other output produces multispectral images for object discrimination and classification. The spectral and temporal resolution of the data produced by the spectral imager are adjustable in real time, making it possible to achieve optimum tradeoff between different sensing functions to match dynamic monitoring requirements during a mission. The system has high optical collection efficiency, with output data rates limited only by the readout speed of the detector array. The instrument has no macro-scale moving parts, and can be built in a robust, small-volume and lightweight package, suitable for integration with space vehicles. The technology is also applicable to multispectral imaging applications in diverse areas such as surveillance, agriculture, process control, and biomedical imaging, and can be adapted for use in any spectral domain from the ultraviolet (UV) to the LWIR region.
KEYWORDS: Signal processing, Signal detection, Sensors, Process control, Semiconductor lasers, Absorption, Calibration, Gases, Temperature metrology, Environmental monitoring
An ammonia monitor designed for in situ smoke stack or exhaust duct applications is discussed here. A probe composed of a diffusion cell with a protected multipass optical measurement cavity provides the optical interaction with the sample. Other components of the system include signal processing electronics and an embedded PC104 computer platform. This instrument is useful in a wide variety of ammonia monitoring and process control applications, particularly ammonia-based NOx control technologies, such as selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR). The in situ design eliminates sample handling problems, associated with extractive analysis of ammonia, such as sample line adsorption and heated sample trains and cells. The sensor technology exploited in this instrument is second harmonic spectroscopy using a near infrared diode laser. Data collected during field trials involving both SCR and SNCR applications demonstrate the feasibility and robust operation of this instrument in traditionally problematic operating environments. The instrument can measure other gases by changing the wavelength, either by changing the diode operational set point or by changing the diode. In addition, with straightforward modification the instrument can measure multiple species.
Measurements made using two different types of ammonia monitors during a two-month field study in the summer of 1994 are discussed. The first instrument was a diode-laser based open path monitor designed for automated operation in an industrial environment. The second is a point monitor based on thermal decomposition of ammonia to NO and subsequent analysis by O3 - NO chemiluminescence. The two monitors provided consistent measurements of ammonia during weeks of continuous unattended operation.
Spectral Sciences has developed a family of automated remote gas sensors including a long-path absorption system, and a fiber- optic-based system utilizing multiple remote-sensing heads. Results are presented from initial field tests of the long-path sensor.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.