An intracavity, second-harmonic generation, tunable, dual-frequency, passively Q-switched Nd:YAG laser based on a T-resonator configuration with polarization splitting is proposed, whose frequency difference could be doubled in comparison with fundamental lasing. The Nd:YAG, Cr4 + : YAG, and potassium titanyl phosphate (KTP) crystals were set at the shared arm, which could considerably reduce thermal fluctuation and pulse timing jitter between dual-frequency lasers. One birefringent filter consisting of a polarized beam splitter and a half-wave plate (HWP) is placed in each divided arm to select their single longitudinal mode. As a result, the p-polarized and s-polarized passively Q-switched components of 532 nm are simultaneously operated, whose power easily reaches to same and frequency is beneficial to tune theoretically throughout the whole gain bandwidth. The main characteristics of the power, longitudinal mode selection, and the pulse have been tested experimentally. Moreover, the frequency difference of the dual-frequency laser at 532 nm has been widely tuned from 9.6 to 117 GHz, by slightly adjusting the tilt angles of the HWPs. We offer a simple and widely tunable source with potential for portable frequency reference applications in absolute-distance interferometry, terahertz-wave generation, and other fields.
Elasticity modulus is a critical parameter to determine the mechanical characters of the human tissue and materials.The new stimulated Brillouin scattering (SBS) method possesses the unique characters of high speed and resolution. In this study, a SBS measurement system of elasticity modulus has been developed using a passively Q-switched dual-frequency Nd:YAG laser as the source, where two beams acting as pump and pumping lights are employed to generate the seed mode of SBS and then amplify it on ectogenous area, respectively. Thus the frequency shift and line width of SBS can be easily got from heterodyne method. Both the oscillation and output characteristics of the dual-frequency pulse laser have been investigated. The simple and efficient SBS setup allows for the generation and amplification of SBS, which will provide a reference of the application SBS of detecting dynamic change on human tissue and materials in biomechanics and medicine science.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.