We present a machine learning method to assign stellar parameters (temperature, surface gravity, metallicity) to the photometric data of large photometric surveys such as SDSS and SKYMAPPER. The method makes use of our previous effort in homogenizing and recalibrating spectroscopic data from surveys like APOGEE, GALAH, or LAMOST into a single catalog, which is used to inform a neural network. We obtain spectroscopic-quality parameters for millions of stars that have only been observed photometrically. The typical uncertainties are of the order of 100K in temperature, 0.1 dex in surface gravity, and 0.1 dex in metallicity and the method performs well down to low metallicity, were obtaining reliable results is known to be difficult.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.