Free-Space Optical Communication (FSOC) links between Earth-based Optical Ground Stations (OGSs) and satellites offer immense potential to securely and efficiently exchange vast amounts of information with worldwide coverage. However, atmospheric turbulence inhibits this potential by distorting laser beams, as they propagate through the atmosphere. Adaptive Optics (AO) systems are typically employed at the OGS to correct for these adverse effects and can increase the efficiency of laser light being coupled into an optical fibre for a downlink laser beam. Concurrently, the same AO system can be used to increase the coupling of laser light into an orbiting satellite by pre-distorting the uplink laser beam. In such a scenario, the downlink laser beam is used to measure the distortions that are applied by the atmosphere, and the conjugate of these distortions can then be applied to the uplink laser beam. The atmosphere then corrects the pre-distorted beam, resulting in a flat wavefront at the top of the atmosphere, as well as stable and efficient coupling of light into the satellite. This work showcases the successful experimental ground-to-satellite links in the spring of 2023 between DLR’s recently commissioned OGS and TESAT’s laser communications terminal (LCT-135)—i.e., part of the Technology Demonstration Payload No. 1 (TDP-1) on the geostationary satellite, Alphasat. Pre-distortion was successfully applied via an AO system testbed within the OGS, which resulted in extremely power efficient bi-directional tracking links with Alphasat. The findings of this work show that the application of pre-distortion AO not only improves the coupling of laser light at the satellite, but also reduces the scintillation experienced at the satellite, thus improving the robustness of the link.
The satellite market is shifting towards smaller (micro and nanosatellites), lowered mass and increased performance platforms. Nanosatellites and picosatellites have been used for a number of new, innovative and unique payloads and missions. This trend requires new concepts for a reduced size, a better performance/weight ratio and a reduction of onboard power consumption. In this context, disruptive technologies, such as laser-optical communication systems, are opening new possibilities. This paper presents the C3PO1 system, “advanced Concept for laser uplink/ downlink CommuniCation with sPace Objects”, and the first results of the development of its key technologies. This project targets the design of a communications system that uses a ground-based laser to illuminate a satellite, and a Modulating Retro-Reflector (MRR) to return a beam of light modulated by data to the ground. This enables a downlink, without a laser source on the satellite. This architecture suits well to small satellite applications so as high data rates are potentially provided with very low board mass. C3PO project aims to achieve data rates of 1Gbit/s between LEO satellites and Earth with a communication payload mass of less than 1kilogram. In this paper, results of the initial experiments and demonstration of the key technologies will be shown.
Laser-induced contamination (LIC) is still a major risk for space based laser systems. In this paper the mitigation of LIC by oxygen is investigated. Tests were performed with a pulsed laser at 355 nm. The partial pressure of the contamination material was in the range of 10-5 -10-4 mbar. The mitigation effect showed a threshold behavior concerning the ratio between contamination and oxygen pressure. Also a cleaning effect was successfully demonstrated: previously created depositions were completely removed by irradiation at several tens Pa oxygen pressure without any remaining degradation of the optical surface.
Laser ranging to satellites (SLR) in earth orbit is an established technology used for geodesy, fundamental science and precise orbit determination. A combined active and passive optical measurement system using a single telescope mount is presented which performs precise ranging measurements of retro reflector equipped objects in low earth orbit (LEO). The German Aerospace Center (DLR) runs an observatory in Stuttgart where a system has been assembled completely from commercial off-the-shelf (COTS) components. The visible light directed to the tracking camera is used to perform angular measurements of objects under investigation. This is done astrometrically by comparing the apparent target position with cataloged star positions. First successful satellite laser ranging was demonstrated recently using an optical fiber directing laser pulses onto the astronomical mount. The transmitter operates at a wavelength of 1064 nm with a repetition rate of 3 kHz and pulse energy of 25 μJ. A motorized tip/tilt mount allows beam steering of the collimated beam with μrad accuracy. The returning photons reflected from the object in space are captured with the tracking telescope. A special low aberration beam splitter unit was designed to separate the infrared from visible light. This allows passive optical closed loop tracking and operation of a single photon detector for time of flight measurements at a single telescope simultaneously. The presented innovative design yields to a compact and cost effective but very precise ranging system which allows orbit determination.
Operating high power space-based laser systems in the visible and UV range is problematic due to laser-induced
contamination (LIC). In this paper LIC growth on high-reflective (HR) coated optics is investigated for UV irradiation of
355 nm with naphthalene as contamination material in the range of 10-5 mbar. The investigated HR optics were coated
by different processes: electron beam deposition (EBD), magnetron sputtering (MS) or ion beam sputtering (IBS). In-situ
observation of contamination induced damage was performed using a long distance microscope. Additionally the onset
and evolution of deposit formation and contamination induced damage of optical samples was observed by in-situ laserinduced
fluorescence and reflection monitoring. Ex-situ characterization of deposits and damage morphology was
performed by differential interference contrast and fluorescence microscopy.
It was found that contamination induced a drastic reduction of laser damage threshold compared to values obtained
without contamination. Contamination deposit and damage formation was strongest on IBS followed by MS and smallest
on EBD.
In this paper some basic investigations about laser-induced contamination are reported. As contamination materials pure
aromatic hydrocarbons (naphthalene and anthracene) were used. A particular focus of the tests was to investigate the
impact of laser-induced contamination on damage threshold. Onset and evolution of deposit formation and damage were
observed in-situ by laser-induced fluorescence and transmission monitoring. As optical samples uncoated fused silica
substrates and AR and HR coated optics with different coating morphology, depending on coating process (e-beam,
magnetron sputtering) were investigated. Ex-situ characterization of deposits and damage morphology was performed by
differential interference contrast, fluorescence, and atomic force microscopy. The tests were run with pulsed UV light at
355 nm. Partial pressure of contamination material in the range of 10-4 mbar induced a drastic reduction of laser damage threshold compared to values obtained without contamination.
We have characterised a strain and temperature sensing system being developed by Southern Photonics that uses a new
Optical Interrogator and fibre Bragg gratings. We have determined the key strain and temperature coefficients, and
shown that strain and temperature can be measured simultaneously. The experimental uncertainty is 5.2 pm when using
the 1540 nm fibre Bragg grating, which corresponds to an experimental uncertainty in measuring the temperature of 0.54
ºC and in measuring the strain of 3.4 με. Simulations predict that a Bragg reflection of more than 90% can be achieved
for Bragg Gratings in polymer thin films containing chromophores for grating lengths as small as 200 μm. A small Bragg
grating length means that it should be possible to create waveguides and four Bragg gratings for strain tensor and
temperature measurements within an area as small as 5×5 mm2.
Successful 112 GBit/s PDM-CSRZ-DQPSK transmission with coherent detection and digital electronic DSP post
processing is reported over a 1730 km SSMF plus 300 km DCF field installed DWDM-system. A modular network
approach with co-propagating 10 GBit/s WDM-channels is achieved.
In this article we present a summary of the latest 100 Gbps field trials in the network of Deutsche Telekom AG with
industry partners. We cover a brown field approach as alien wavelength on existing systems, a green field high speed
overlay network approach and a high speed interface router-router coupling.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.