In the far-infrared (FIR) / THz regime the angular (and often spectral) resolution of observing facilities is still very
restricted despite the fact that this frequency range has become of prime importance for modern astrophysics. ALMA
(Atacama Large Millimeter Array) with its superb sensitivity and angular resolution will only cover frequencies up to
about 1 THz, while the HIFI instrument for ESA'a Herschel Space Observatory will provide limited angular resolution
(10 to 30 arcsec) up to 2 THz. Observations of regions with star and planet formation require extremely high angular
resolution as well as frequency resolution in the full THz regime. In order to open these regions for high-resolution
astrophysics we present a study concept for a heterodyne space interferometer, ESPRIT (Exploratory Submm Space
Radio-Interferometric Telescope). This mission will cover the Terahertz regime inaccessible from the ground and outside
the operating range of the James Webb Space Telescope (JWST).
In the far-infrared (FIR) / THz regime the angular (and often spectral) resolution of observing facilities is still very restricted despite the fact that this frequency range has become of prime importance for modern astrophysics. ALMA (Atacama Large Millimeter Array) with its superb sensitivity and angular resolution will only cover frequencies up to about 1 THz, while the HIFI instrument for ESA'a Herschel Space Observatory will provide limited angular resolution (10 to 30 arcsec) up to 2 THz. Observations of regions with star and planet formation require extremely high angular resolution as well as frequency resolution in the full THz regime. In order to open these regions for high-resolution astrophysics we propose a heterodyne space interferometer mission, ESPRIT (Exploratory Submm Space Radio-Interferometric Telescope), for the Terahertz regime inaccessible from ground and outside the operating range of the James Webb Space Telescope (JWST).
The far-infrared (FIR) wavelength regime has become of prime importance for astrophysics. Observations of ionic, atomic and molecular lines, many of them present in the FIR, provide important and unique information on the star and planet formation process occurring in interstellar clouds, and on the lifecycle of gas and dust in general.
As these regions are heavily obscured by dust, FIR observations are the only means of getting insight in the physical and chemical conditions and their evolution. These investigations require, besides high spectral, also high angular resolution in order to match the small angular sizes of star forming cores and circum-stellar disks. We present here a mission concept, ESPRIT, which will provide both, in a wavelength regime not accessible from ground by ALMA (Atacama Large Millimeter Array), nor with JWST (James Webb Space Telescope).
Conference Committee Involvement (1)
Optical, Infrared, and Millimeter Space Telescopes
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.