Imaging performance of a flat panel-based chest radiography system was evaluated using a recently introduced parameter: system detective quantum efficiency (DQE), i.e. DQESYS. The DQESYScalculation includes the signal to noise (SNR) transfer efficiency of the x-ray detector (detector DQE) and of the antiscatter device (DQEASD). Posterior Anterior (PA) and bedside imaging techniques were evaluated using Poly(methyl methacrylate) (PMMA) thicknesses of 90, 130, 160 and 190 mm, equivalent to the lung and mediastinum regions covering a range of three patient sizes. Detector DQE was measured for beams without scatter using aluminum filters with similar half-value-layer (HVL) as the PMMA blocks. The grid efficiency (DQEASD) was calculated from the primary and scatter grid transmissions for the four PMMA thicknesses. Acquisition settings were 120 kV (grid in) for the bucky PA technique and 105 kV (grid out) for bedside imaging. Results showed an increase in the DQESYS for PA examinations with increasing PMMA thickness, opposite to the detector DQE. This can be attributed to the increasing efficiency of the antiscatter grid (i.e. DQEASD) as PMMA thickness is increased, consistent with the expected result that grid use is important for the thicker patients. DQESYS for bedside was lower than for PA, this is because no grid is used for bed examinations and DQESYS reverts to detector DQE. DQESYS was successfully used to evaluate the performance of the system in the presence of scatter radiation with the antiscatter device in place, results showed the importance of this type of devices for chest radiographies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.