This paper, “Technologies pour les microlasers et la micro-optique," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.
As 193 nm lithography appears to be a long term solution for wafer patterning, we expect new resolution enhancement coming from advanced mask technologies. We have studied an assembly technique that could increase mask capability towards advanced wafer patterning. This paper presents a proof of concept for the use of bonded mask, obtained with two plates assembled together. The initial application targeted here is an alternative solution to pellicle. A special process has been worked out to obtain bonded test samples. Based on the knowledge of silicon wafer bonding techniques, we have developed a process that allows bonding of fused silica square plates. Constant progress allowed us to use specific materials used in mask manufacturing, such as chromium and fused silica, and also specific square shapes and rather large thickness. The final demonstrator is a Chromium on Glass mask (COG), on which a hard pellicle has been bonded without any additional material. The pellicle was 0.5 mm thick and 100 mm in diameter. This test sample has been qualified in a 248 nm AIMS tool. We made comparative measurements on different occurrence of the same chip, covered or not covered by the pellicle. We have shown evidence of induced spherical aberration for conventional illumination and this has been confirmed by simulation. Image fidelity was proven for positive and negative features. Through focus image capture showed that process windows were not impacted by the hard pellicle.
During the last five years scatterometry measurement using ellispometry and reflectometry has met a great interest in nano and microelectronics fab. Today, this technology of measurement is used to control lot production and has become mature for 1D-grating measurements. Nevertheless, some aspects of this method of measurement are always under research studies. This paper focuses on one of these aspects: the evaluation of the influence of the "real-life 1D-structure" (linewidth variations along the lines and line to line, roughness, defect inside the grating) on spectroscopic signatures and on scatterometry measurement methods. The measurements have been carried out on KLA-TENCOR ellispometer and on Nanometrics reflectometer in order to compare the two methods of measurement. The simulations have been done with MMFE (Modal Method of Fourier Expansion) software developed by LETI labs. To control defect characteristics and defect distributions, one wafer was printed using electron beam lithography. The aim is the evaluation of the impact of defects in the grating on the spectroscopic signatures and its influence on extracted geometrical parameters by fitting the experimental curves. Different deviations to real-life structures have been studied. First we focus on the influence of typical defects of lithography processes such as bridging and partial destruction of lines and on the influence of CD distribution values inside the grating. Then, we study the influence and the possibilities of measuring Line Edge Roughness (LER). For LER measurements different targets have been also exposed on e-beam tool. Simulations and experimental measurements have been carried out. All the results obtained have been compared with imaging standard tool: top down SEM measurement.
The merits of complementary double dipole illumination using 193 nm exposure wavelength with water immersion for 45 nm and 32 nm nodes is investigated. Off-axis dipole illumination shows a significant improvement in the resolution for lines and spaces oriented along the direction perpendicular to the dipole orientation. However, there is also a significant loss of resolution along the dipole direction. Consequently, two dimensional circuit patterning requires a double exposure to improve the resolution in both directions. Thus, the original layout must be decomposed into two masks: one containing the features to be primarily imaged with one dipole and another one with features to be imaged in the complementary direction. The horizontal and vertical lines must be selected and protective patches are required on each mask to protect the pattern formed by the complementary exposure. The potential capability of the dipole illumination used in conjunction with the immersion lithography for 45 nm and 32 nm nodes will be described. The Mentor Graphic approach based on the model assisted decomposition for the Double Dipole Lithography (DDL) was applied to the small clips of the 2D layout of the gate level for random logic. The lithographic process window and the CD control will be estimated through simulation.
This paper shows the capability of chromeless phase lithography (CPL) and is particularly focused on different strategies for optical proximity corrections (OPC). A chromeless phase database is easily obtained from the original layout by changing the chromium pattern into a phase pattern. However, a specific optical proximity correction has to be applied due to the phase effect and the high transmission of the mask. Mask Error Enhancement Factor (MEEF) and process window for CPL technology have been estimated through wafer exposures. Moreover, various optical proximity correction strategies have been explored through a comparison between phase and chromium features such as hammerhead, zebra and scattering bars 1,2. Indeed, depending on the density of the pattern, we can improve the contrast and the process window by changing the local transmission. The transmission can be controlled by the addition of sub resolution chromium feature such as zebra chromium transverse features on the line for dense pattern, or chromium scattering bars in the space for a sparse pattern, or chromium patches on the line end. From 65 nm node measurements and 45 nm node simulations, the authors will then present the most effective sub resolution pattern to implement.
As Moore's law drives the semiconductor industry to tighter specifications, challenges are becoming real for overlay metrology. A lot of work has been done on the metrology tool capability to improve single-tool precision, tool-to-tool matching and Tool-Induced Shift (TIS) variability. But nowadays these contribute just a small portion of the Overlay Metrology Error (approximately 10% for 90nm technology). Unmodeled systematic, scanner noise and process variation are becoming the major contributors. In order to reduce these effects, new target design was developed in the industry, showing improvements in performance. Precision, Residual analysis, DI/FI (Develop Inspection / Final Inspection) bias and Overlay Mark Fidelity (OMF) are common metrics for measurement quality. When we come to measurement accuracy, we do not have any direct metric to qualify targets.
In the current work we evaluated the accuracy of different AIM (developed by Kla-Tencor) and Frame-In-Frame (FIF) targets by comparing them to reference “SEM” targets. The experiment was conducted using a special designed 65nm D/R reticle, which included various overlay targets. Measurements were done on test wafers with resist on etched poly printed on 248nm scanner.
The results showed that, for this "straight-forward" application, the best accuracy performance was achieved by the Non Segmented (NS) AIM target and was estimated in the order of 1.5 nm site-to-site. This is slightly more accurate than hole-based target and far more than NS FIF target in this particular case. When using the non-accurate NS FIF target, correctable parameters and maximum overlay prediction error analysis, showed up to 24nm overlay error at the edge of the wafer. We also showed that part of this accuracy error can be attributed to the non-uniformity of BARC deposition.
This paper focuses on the capability of the spectroscopic scatterometry method to determine holes features parameters from experimental 3D-target. Scatterometry uses optical tools for spectra recording as ellipsometer form KLA TENCOR and a MMFE (Modal Method of Fourier Expansion) software tool including an advanced electromagnetic simulator and an optimization loop for data extraction.
This study reports on 3D-MMFE regression of different dense holes square and rectangular matrix structures on the simplest structure-resist on silicon-to extract diameter, height of the holes. The holes diameter is from 90nm to 500nm, and the duty ratio is from 1:1 to 2:2 (CD/Space). To be close to real production stack the same matrices have been studied on more complex stack (close to via level with different dielectric material: FSG, dense SiOC).
Finally this study is focused on an analysis on simulation and experiment of the relative sensitivity position of a hole inside the basic element of diffraction. That shows the possibility of scatterometry measurement in detecting via shift.
Each generation of semiconductor device technology drive new and interesting resolution enhancement technology (RET's). The race to smaller and smaller geometry's has forced device manufacturers to k1's approaching 0.40. The authors have been investigating the use of Chromeless phase-shifting masks (CLM) exposed with ArF, high numerical aperture (NA), and off-axis illumination (OAI) has been shown to produce production worthy sub-100nm resist patterns with acceptable overlapped process window across feature pitch. There have been a number of authors who have investigated CLM in the past but the technology has never received mainstream attention due to constraints such as wet quartz etch during mask fabrication, limited approach to optical proximity correction (OPC), and exposure tool limitations such as on-axis illumination and too low of NA. With novel binary halftone OPC and a capable modern mask making process, it has become possible to achieve global and local pattern optimization of the phase shifter for a given layout especially for patterning features with dimension at sub-half-exposure wavelength. The authors have built a number of test structures that require superior 2D control for SRAM gate structures. In this paper the authors will focus on image process integration for the 65nm node. Emphasis on pattern layout, mask fabrication and image processing will be discussed. Furthermore, the authors will discuss defect printing, inspection and repair, mask error enhancement factor (MEEF) of 2D structures coupled with phase error, layout, and mask fabrication specifications.
Each generation of semiconductor device technology drive new and interesting resolution enhancement technology (RET’s). The race to smaller and smaller geometry’s has forced device manufacturers to k1’s approaching 0.40. The authors have been investigating the use of Chromeless phase-shifting masks (CLM) exposed with ArF, high numerical aperture (NA), and off-axis illumination (OAI) has been shown to produce production worthy sub-100nm resist patterns with acceptable overlapped process window across feature pitch. There have been a number of authors who have investigated CLM in the past but the technology has never received mainstream attention due to constraints such as wet quartz etch during mask fabrication, limited approach to optical proximity correction (OPC), and exposure tool limitations such as on-axis illumination and too low of NA. With novel binary halftone OPC and a capable modern mask making process, it has become possible to achieve global and local pattern optimization of the phase shifter for a given layout especially for patterning features with dimension at sub-half-exposure wavelength. The authors have built a number of test structures that require superior 2D control for SRAM gate structures. In this paper the authors will focus on image process integration for the 65nm node. Emphasis on pattern layout, mask fabrication and image processing will be discussed. Furthermore, the authors will discuss defect printing, inspection and repair, mask error enhancement factor (MEEF) of 2D structures coupled with phase error, layout, and mask fabrication specifications.
Spectroscopic scatterometry is an optical metrology technique based on light scattering aiming at measuring geometrical dimensions, such Critical Dimension (CD) but also height or depth, side-wall angle and even more tiny details in a line profile. Scatterometry tool measures and analyzes the spectrum scattered or diffracted from a periodic target patterned on a wafer. Scatterometry is strongly considered as an alternative or as a complementary technique to CDSEM for 90 nm and below technology nodes. Like other optical metrology techniques, scatterometry measurements are rapid, non-destructive and highly repeatable. Actual tools have been assessed for dense to semi-isolated lines CD metrology and profiling. Developments are now targeting hole measurement. 2D-scatterometry (scatterometry on 3D patterns) becomes mature and begins to be used in advanced fab for CD control after lithography. This paper focuses on the capability of the spectroscopic scatterometry method to determine holes features and to try to give theoretical limits of method. Scatterometry uses an optical tool for spectra recording and a software tool including an advanced electromagnetic simulator and an optimization loop for data extraction. The first part of this study reports on the influence of bi-periodic structures in the experimental analysis of holes measurements. Then a limitation in holes density is defined. The second part of this study is a theoretical analysis based on simulation of the sensitivity of scatterometry with respect to various holes parameters. Following parameters are generally taken into account: holes diameter, holes ellipticity (elliptical ratio), holes roundness, holes depth and tilt angle for non-circular holes. We determine the respective influence of these parameters on ellipsometric spectra.
This numerical study focused on the errors that can occur when ellipsometric spectroscopic scatterometry programs are used for critical dimension (CD) control and other significant geometrical parameters. The role of the number of wavelengths, the measurements noise and the spectral range is analyzed in terms of CD precision. Conversely, an important part is devoted to the effect of a bad shaping modelling of the lines (corner rounding, foot and notch effects) and bad characterization of the index. We show that the scatterometry technique is very resistant to measurement noise, even for a small number of wavelengths, although the spectral range has an important role on the CD calculation. We also give quantitative data about the accuracy needed on refractive index of the diffracting
material must. Excepted for profiles with additional feet, the CD found is very close to the original line without geometrical defects (corner rounding and notches).
Using scatterometry based on Spectroscopic Ellipsometry, a complete study of Gate lithography level measurement on standard products has been conducted. Experiments were done on typical ST batches for 120, 90, and 65 nm nodes. KLA-Tencor SpectraCD SE system is used to collect and analyze line critical dimensions and profiles. A systematic correlation with Scanning Electron Microscope (SEM) is done, completed by a cross section analysis. The study also takes into account lithography defect anlysis using a specific targets with intentionally generated process failures. Our objective is to determine the sensitivity window of such measurment technique to process defect and marginal process conditions. We show that KLA-Tencor SpectraCD allows a full reconstruction of the line profile - as well as the film stack underneath it - with values that are in agreement with production control. Cpm values obtained on products demonstrate that SE based scatterometry fulfils all requirements to be integrated in a production envrionemnt and provides suitable metrology for advanced lithography process monitoring.
A key enabler to a successful process development and to the device functionality is the introduction of a proper metrology framework, consisting in the selection of the 'correct' tool class for the proposed application on one hand and in the integration of the related measuring procedure into the whole process flow on the other hand. The plan for this work was focused onto the analysis of the main options for critical dimension (CD) measurements targeting to the 65nm technology node, as stated in the International Technology Roadmap for Semiconductors (ITRS) 2001 edition and in the ITRS 2002 update. In order to investigate in deper details the actual status of each selected technique, a list of key characteristics was identified and a comprehensive benchmark performed. Considered techniques include CD-scanning electron microscopy (SEM), CD-scatterometry, CD-atomic force microscopy and 'Combo' approaches. Based upon the data collected during the benchmark phase, suitable procedures to be applied for a proper metrological evaluation of the 65nm node proces development are presented.
We investigate a laser range finder for obstacle detection in automotive field. This device is based on the use of an eye-safe pulsed microchip laser, emitting near 1.55 micrometer. The technology of solid-state microchip lasers is a good way to obtain a compact, reliable and low cost laser source. Passively Q-switched microchip lasers are of great interest for time of flight range finding: short pulse duration and high peak power have been obtained. A short pulse duration gives good precision and high peak power gives a long range of detection. The distance measurement is obtained with an ASIC chronometer which implements the time-of- flight technique. We also developed reception circuit for start and stop signals and data input/output. The ASIC chronometer is based on two complementary techniques: a clock counter for coarse measurement and multiple slopes generator for fine measurement.
The microchip laser is the most compact and the simplest diode pumped solid state laser, with a typical dimension of 0.5 mm3. In spite of the extreme simplicity of this concept which was described in sixties, the first devices have been realized much later in eighties, in different laboratories in the world. The main advantage of the microchip laser is its ability to be fabricated with collective fabrication processes, using techniques such as currently used in microelectronics, allowing a low cost mass production with a good reproducibility and reliability. The microchip lasers are very simple to use without any optical alignment and any maintenance. They foretell a true technical revolution in the domain of solid state lasers which should be opened to high volume and low cost markets. They have many different industrial applications in large markets such as: automotive, laser marking and material processing, environmental and medical applications, public works, telecommunications, etc.
Microchip lasers are used as pulse generators in the LMJ front end. These lasers are made with Nd:YLF using collective fabrication processes. A linearly polarized, single-frequency, 1053 nm emission has been achieved with very good efficiency. The beam of the microchip lasers has been coupled into a polarization-maintaining single mode fiber using microlenses, with coupling efficiencies better than 70%.
Laser operation in the 2 micrometers -wavelength range is reported. Two different crystals are studied: Y2SiO5 and SrY4(SiO4)3O doped with 5% thulium. Microchip lasers with flat/flat monolithic cavity are operated at room temperature, with Ti:Sapphire laser pumping. Threshold as low as 130 mw of incident pump power and slope efficiency as high as 46% were obtained. The emission spectrum of such microchip lasers appears to be very wide (20 to 30 nm). Laser experiments with laser diode pumping are also reported.
We report the growth by liquid phase epitaxy and laser operation at 2.012 micrometers of Tm:YAG planar waveguides with various concentrations (4 to 10 at %), lengths (3,4 mm) and active layer thicknesses (8 to 30 micrometers ). The pumping source was 1 W GaAlAs SDL diode emitting at 785 nm and the cavity consisted of 2 plane mirrors butted to the waveguide endfaces. Initial results have been obtained with a 6% doped, 4 mm long and 14.6 micrometers thick, Tm:YAG epilayer: Thresholds occurred at respectively 60 mW and 300 mW of incident power (48 mW and 136 mW of absorbed power taking in account pump feedback by the output couplers) for output mirrors transmissions of 2% and 12% respectively. Slope efficiencies of 32% and 48% with respect to absorbed power have been achieved with these output transmissions. With Ti:sapphire pumping an using 1.8% output coupling, laser threshold as low as approximately equals 10 mW and slop efficiencies of approximately equals 30% have been obtained in a range of different Tm:YAG waveguides. This performance is comparable to the best results published until now for bulk crystals.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.