Achieving clear vision through smoke and flames is a highly pursued goal to better manage intervention priorities and to allow first responders operating safely during fire accidents. Here we show active far-infrared systems to image static/moving targets through fire with different imaging performance and field-portability characteristics. Low-coherence infrared systems and high-coherence holographic sensors will be discussed. We show that a pre-trained convolutional neural network can detect the presence of a person hidden behind fire in real-time, accurately, even when the system is not able to reject the flame contributions in full, being suitable for video-surveillance applications.
Learning to automatically recognize objects in the real world is a very important and stimulating challenge. This work deals with the problem of detecting aluminium profiles within images, using hierarchical representations such as those based on deep learning methods. The use of regional CNN, a conceptually simple, flexible, and general framework for object instance segmentation, allows to exceed the previous state-of-the-art results. This approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. Neural network training uses ResNet networks of depth 50 or 101 layers. In particular, the training dataset consists of synthetic data generated by CAD files. The Dataset creation process is fundamental: experimental results show that trivial datasets lead to poor detection performance. A rich dataset, instead, including more complex images, allows the network to learn more and better guaranteeing excellent results. How to get more data, if you do not have more data? To get more data, we just need to make minor alterations such as flips, scale or rotations to existing dataset. This process is known as Data augmentation. The performance of the proposed system strongly depends on the dataset used for training and on the backbone architecture used. This why, adopting a strategy that generates a priori a very large dataset the time required to create the annotation file grows almost exponentially. The validation and test dataset, on the other hand, consists of real images captured by cameras. The distinctiveness of this work consists to train a deep neural network with synthetic data (aluminium CAD files) and verify if it on real data. Experiments show that the implementation of architecture, as described above, leads to good performance in automatic detection and classification. Future work will be addressed to improve the network training process together with the architecture, the algorithms and the dataset creation process. The latter is proved to be fundamental for the balance and optimization of the whole process. The way is to develop not much augmented datasets focusing on online data augmentation during network training.
In recent years, "FragTrack" has become one of the most cited real time algorithms for visual tracking of an object in a video sequence. However, this algorithm fails when the object model is not present in the image or it is completely occluded, and in long term video sequences. In these sequences, the target object appearance is considerably modified during the time and its comparison with the template established at the first frame is hard to compute. In this work we introduce improvements to the original FragTrack: the management of total object occlusions and the update of the object template. Basically, we use a voting map generated by a non-parametric kernel density estimation strategy that allows us to compute a probability distribution for the distances of the histograms between template and object patches. In order to automatically determine whether the target object is present or not in the current frame, an adaptive threshold is introduced. A Bayesian classifier establishes, frame by frame, the presence of template object in the current frame. The template is partially updated at every frame. We tested the algorithm on well-known benchmark sequences, in which the object is always present, and on video sequences showing total occlusion of the target object to demonstrate the effectiveness of the proposed method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.