SUNRISE III is the third flight of the international stratospheric balloon project Sunrise. The SUNRISE III carries a 1-meter aperture Gregorian telescope and provides a unique platform to perform seeing-free observations at UV-Visible-IR wavelengths. It is designed in the framework of NASA's long-duration balloon program to be launched at ESRANGE, Sweden, and to fly to Canada at float altitudes of 35 – 37 km. For the third flight, the post-focal instrumentation was extensively upgraded to enhance spectro-polarimetric capability; SUSI for 309 – 417 nm, TuMag for 525 nm and 517 nm, and SCIP for 765 – 855 nm. The gondola was also renewed to achieve stable pointing to a target on the solar surface. The team led by NAOJ provided SCIP through international collaboration with the Spanish and German teams. SUNRISE III was launched in July 2022 but was terminated because of a hardware problem. The telescope and instruments were successfully recovered and will be flown again in June 2024.
We present the details of the optical design, corrector system, mechanical layout, tolerances, pointing requirements, and overall performance of the sub-millimeter wavelength Large Balloon Reflector telescope (LBR).
BIRC is a multispectral infrared imager designed to operate in 8 bandpasses between 2.5 and 5.0 μm utilizing a cryocooled
HgCdTe detector and Ø80 cm telescope. The instrument was flown on a ballooncraft platform and operated in a
near-space environment. BIRC was designed to measure the water and CO2 emissions from the comet ISON. The system
produces an f/4 image over a field of view of 3 arcminutes, and employs shift/co-add algorithms to observe dim objects.
An innovative thermal design holds the system components in separate vacuum and atmospheric zones which are
independent of the neighboring instrument deck. This paper summarizes the design, test and integration of the BIRC
instrument.
The Stratospheric TeraHertz Observatory (STO) is a NASA funded, Long Duration Balloon (LDB) experiment designed to
address a key problem in modern astrophysics: understanding the Life Cycle of the Interstellar Medium (ISM). STO will
survey a section of the Galactic plane in the dominant interstellar cooling line [C II] (1.9 THz) and the important star
formation tracer [N II] (1.46 THz) at ~1 arc minute angular resolution, sufficient to spatially resolve atomic, ionic and
molecular clouds at 10 kpc. STO itself has three main components; 1) an 80 cm optical telescope, 2) a THz instrument
package, and 3) a gondola [1]. Both the telescope and gondola have flown on previous experiments [2,3]. They have been reoptimized
for the current mission. The science flight receiver package will contain four [CII] and four [NII] HEB mixers,
coupled to a digital spectrometer. The first engineering test flight of STO was from Ft. Sumner, NM on October 15, 2009.
The ~30 day science flight is scheduled for December 2011.
The Solar Bolometric Imager (SBI) is an imaging solar telescope assembly that employs a novel single-detector
broadband bolometric measurement technique. An uncooled thermal IR imaging detector is coated with a thin gold-black
film that absorbs over 98% of the solar spectrum. The absorbed energy is then re-radiated in the thermal IR and
sampled by the detector array. This technique [4] provides an evenly weighted integrated responsivity that spans the
majority of the solar spectrum (0.2-2.5μm). We present here performance results from the follow-on gold-black
deposition process investigation, radiation testing results, spacecraft instrument design and some of the prototype
detector/imaging system's flight performance and calibration data from our 2007 Ft. Sumner balloon flight that
demonstrates the instrument met or exceeded all of its specification.
NICO, the Near Infrared Chromosphere Observatory, is a platform for determining the magnetic structure and fources of heating for the solar chromosphere. NICO, a balloon-borne observatory, will use the largest solar telescope flying to map the magnetic fields, velocities, and heating events of the chromosphere and photosphere in detail. NICO will introduce new technologies to solar flight missions, such as wavefront sensing for monitoring telescope alignment, real-time correlation tracking and high-speed image motion compensation, and wide aperture Fabry-Perot etalons for extended spectral scanning.
Current IP/ATM routers use an electrical switching fabric/backplane and either optical or electrical interconnects between the line cards to route data. An electrical backplane and associated connectors limit the number of high speed interconnections due to practical considerations. Scaling these so-called third generation routers to the terabit regime with high port densities faces enormous problems due to the high interconnect and electrical power density. Packet routers with an optical switching fabric are considered as the next generation of IP/ATM Multi-Service routers which enable scalability towards the Terabit and Petabit regime. In this paper, various architectures with electrically active or passive optical switch fabrics will be highlighted and differences in terms of switching speed and scalability will be discussed. Recent results using a passive Array Waveguide Grating (AWG) router and fast wavelength tunable laser are presented in the second half of this paper.
KEYWORDS: Telescopes, Mirrors, Fabry–Perot interferometers, Space telescopes, Sun, Control systems, Solar processes, Solar cells, Magnetism, Computing systems
In January 2000, an 80-cm F/1.5 Ritchey-Chretien solar telescope flew for 17 days suspended from a balloon in the stratosphere above Antarctica. The goal was to acquire long time series of high spatial resolution images and vector- magnetograms of the solar photosphere and chromosphere. Such observations will help to advance our basic scientific understanding of solar activity, in particular flares. Flying well above the turbulent layers of the Earth's atmosphere, the telescope should be able to operate close to its diffraction limited resolution of 0.2 arcsec, providing high resolution observations of small scale solar features. To achieve this goal we developed a platform for the optical telescope that is stable to nearly 10 arcsec. We also developed an image motion compensation system that stabilizes the solar image on the CCD focal plane to about 1 arcsec.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.