Significant anisotropy in as-deposited CVD ZnS at several length scales has been demonstrated through investigation of
structural and optical properties. Compressive strength of cylinders of CVD ZnS oriented in the growth direction is
~50% higher than cylinders taken perpendicular to the growth direction. Lattice parameter measurements of mandrel
side (first-to-grow) material is ~0.4% smaller than growth side (last-to-grow) material in a cored sample representing
~500 hours of CVD growth, indicating significant strain along the growth direction. X-ray diffraction also shows
evidence of preferred orientations for hexagonality which differ depending on position in the growth history. In crosssection,
the cored sample shows several large bands which are correlated with different degrees of infrared absorption
and BTDF scattering. However, no universal trend is found that applies to the whole length from the mandrel to the
growth side regarding optical properties. The extinction in the visible and infrared is lower for measurements
perpendicular to the growth axis than parallel to it, possibly due to scattering from the growth bands.
The existing material choice for long-wave infrared (LWIR) and semi-active laser domes is multispectral zinc
sulfide (ZnS), made by chemical vapor deposition. An alternative route to make more erosion-resistant ZnS could
be through hot pressing ZnS nanoparticles into small-grain material. We have attempted to produce ZnS
nanoparticles both by microwave and microwave-hydrothermal methods. Microwave route produced ultrahigh
purity, homogeneous, well dispersed, and uniformly spherical ZnS nanoparticles. Microwave-hydrothermal route
produced equiaxed cubic-faceted nanoparticles. The powder X-ray diffraction patterns of ZnS shows the presence of
broad reflections corresponding to the (1 1 1), (2 2 0), and (3 1 1) planes of the cubic crystalline ZnS material. The
domain size of the particles estimated from the Debye-Scherrer formula for the main reflection (111) gives a value
of 2.9 and 2.5 for the microwave and microwave-hydrothermal methods respectively.
Samples of CVD ZnS from the United States, Germany, Israel, and China were evaluated using x-ray diffraction,
transmission and Raman spectroscopy, and biaxial flexure testing. Visible and near-infrared scattering, 6 μm
absorption, and ultraviolet cut-on edge varied substantially in tested materials. Transmission cut-on (ultraviolet edge)
blue-shifts with annealing and correlates with visible color but not the 6 μm absorption. Raman scattering for CVD
ZnS, presented here for the first time, was similar for all ZnS tested. Crystallographic hexagonality and texture was
determined and correlated qualitatively with optical scattering. All CVD ZnS tested with biaxial flexure exhibit similar
fracture strength values and Weibull moduli. This survey suggests that despite over 30 years of production as an
infrared window, the optical properties of CVD ZnS and their variability still defy easy explanation.
A series of experiments was performed to ascertain the effects of various metals on the structure and properties of hot isostatic pressed (HIPped) chemical vapor deposited (CVD) ZnS. Samples were HIPped without metal and with Fe, Co, Ni, Cu, Pd, Ag, Pt, and Au foils. It was found that metals promote recrystallization of CVD ZnS to a greater or lesser extent. A processing temperature of 750 °C for 16 hours was chosen to assess the effect of the metals, since HIPping without metal under these conditions does not recrystallize ZnS. Fe and Co have little or no effect on recrystallization, Ni and Au have moderate effect, and Pt, Pd, Ag, and Cu have the greatest effect. Ag and Cu, however, seem to have problems with indiffusion of the metal. Recrystallization is correlated with improvement in transmission characteristic of multispectral ZnS. "Interrupted HIP" experiments were conducted at 900 °C for 1 hour and at 750 °C for 2 hours to assess the relative effects of temperature and metal on the recrystallization. At 900 °C recrystallization proceeded in the bulk even without metal, but was accelerated by certain metals. At 750 °C, recrystallization took place only on the
surface in contact with certain metals and not in the bulk. The role of contact of the metal to the ZnS surface was further explored by comparing Pt HIP experiments with foil fully in contact, foil with air gap, and sputtered metal Pt. Some possible mechanisms for the role of the metal in promoting recrystallization of ZnS are suggested.
There is a continuing need for durable and protective coatings for long wavelength infrared (LWIR) windows and domes as a result of the environmental and mechanical vulnerability of most LWIS transparent materials. Diamond coatings would be ideal except for the fact that relatively high deposition temperatures are required to deposit films having low optical absorption. Diamond-like carbon films deposited at low temperatures are typically too absorbing or highly stressed. Certain transition metal oxide films can be used successfully for many applications, are very durable and can be deposited by traditional thin film deposition methods. In this study, Y2O3, ZrO2 and HfO2 films are deposited and characterized, in particulara their absorption coefficients as a function of wavelength are derived at wavelengths in the LWIR. Durable oxide coatings are deposited over full-size LWIR windows.
Durable coatings are used to improve the erosion resistance of high performance optical materials such ZnS. Diamond is the hardest and stiffest of all LWIR transparent materials and would make an excellent protective coating for ZnS. Direct deposition of diamond on ZnS by microwave plasma CVD has proved to be very difficult. Atomic hydrogen used in the diamond deposition process attacks and destroys ZnS very rapidly. In order to protect ZnS during the diamond deposition process protective IR transparent interlayers were developed. These layers encapsulate the ZnS and provide a nucleating surface for diamond deposition. Two different methods of nucleating diamond on these interlayers were developed to produce fully dense diamond films several microns thick. The sand erosion resistance of diamond coated ZnS was found to improve when the diamond was deposited on patterned ZnS substrates.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.