Spotlighting is one illumination field where the application of light emitting diodes (LED) creates many advantages. Commonly, the system for spot lights consists of a LED light engine and collimating secondary optics. Through angular or spatial separated emitted light from the source and imaging optical elements, a non uniform far field appears with colored rings, dots or patterns. Many feasible combinations result in very different spatial color distributions. Several combinations of three multi-chip light sources and secondary optical elements like reflectors and TIR lenses with additional facets or scattering elements were analyzed mainly regarding the color uniformity. They are assessed by the merit function Usl which was derived from human factor experiments and describes the color uniformity based on the visual perception of humans. Furthermore, the optical systems are compared concerning efficiency, peak candela and aspect ratio. Both types of optics differ in the relation between the color uniformity level and other properties. A plain reflector with a slightly color mixing light source performs adequate. The results for the TIR lenses indicate that they need additional elements for good color mixing or blended light source. The most convenient system depends on the requirements of the application.
KEYWORDS: Visualization, Light emitting diodes, Lamps, Light sources, Halogens, Optical components, Reflectors, Color difference, Signal to noise ratio, Color vision
The scope of the present paper is the derivation of a merit function which predicts the visual perception of LED spot lights. The color uniformity level Usl is described by a linear regression function of the spatial color distribution in the far field. Hereby, the function is derived from four basic functions. They describe the color uniformity of spot lights through different features. The result is a reliable prediction for the perceived color uniformity in spot lights. A human factor experiment was performed to evaluate the visual preferences for colors and patterns. A perceived rank order was derived from the subjects’ answers and compared with the four basic functions. The correlation between the perceived rank order and the basic functions was calculated resulting in the definition of the merit function Usl. The application of this function is shown by a comparison of visual evaluations and measurements of LED retrofit spot lamps. The results enable a prediction of color uniformity levels of simulations and measurements concerning the visual perception. The function provides a possibility to evaluate the far field of spot lights without individual subjective judgment.
Many LED-based applications would benefit from more efficient and/or high lumen output devices that enable
usage in both white and single color illumination schemes. In the present article we briefly review the materials
research history leading to optical ceramic converters and discuss their typical characteristics. Recently
demonstrated high performance values in terms of efficacy and external quantum efficiency in orange (amber)
spectral region are described.
In this contribution the relevant technological aspects of LED-based lamps for solid state lighting are discussed. In
addition to general energy efficiency considerations improvements in LED chip technology and white light generation
are presented.
II-VI semiconductors can exhibit strong photoluminescence throughout the visible spectrum and are excellent candidates
for filling the so-called "green gap". We report on the performance of green color-converted LEDs fabricated by bonding
CdMgZnSe multiple quantum well structures to high-efficiency blue-emitting GaInN LEDs. A device efficacy of 181
lm/W at 537 nm (dominant) is measured under room temperature, 350 mA/mm2 quasi-cw conditions, more than twice as
efficient as typical commercial green LEDs today. The thermal roll-off is shown to be comparable to that of typical
green GaInN LEDs. Finally, the implications of the availability of high-efficiency, narrow-band, green and yellow
emitters in display applications will be discussed.
Photonic crystals (PhCs) are known to diffract guided modes in a light-emitting diode into the light extraction cone
according to Bragg´s law. The extraction angle of a single mode is determined by the phase match between the guided
mode and the reciprocal lattice vector of the PhC. Hence, light extraction by PhCs enables strong beam-shaping if the
number of guided modes can be kept to a minimum. InGaN thin-film micro-cavity light-emitting diodes (MCLEDs)
with photonic crystals (PhCs) emitting at 455 nm have been fabricated. The GaN layer thickness of the processed
MCLEDs with a reflective metallic p-contact was 850 nm. One and two-dimensional PhCs were etched 400 nm into the
n-GaN to diffract the guided light into air. The farfield radiation pattern was strongly modified depending on the lattice
type and lattice constant of the PhC. Two- six- and twelve-fold symmetry was observed in the azimuthal plane from 1D
lines, hexagonal lattices and Archimedean A7 lattices, respectively. The emission normal to the LED surface was
enhanced by up to 330% compared with the unstructured MCLEDs. The external quantum efficiency was enhanced by
80% for extraction to air. The flux from PhC-MCLEDs in a radial lens was 15.7 mW at 20 mA and 36% external
quantum efficiency was measured at 3 mA. High order diffraction was found to contribute significantly to the
enhancements in efficiency and directionality. The experimental results are compared with FDTD simulations.
Keywords: light-emitting diodes, photonic crystal, cavity, InGaN
Data rates above 250 MBit/s via polymer optical fiber (POF) require specially designed light emitting diode (LED) chips. Because of the absorption minimum of the POF, the red wavelength region around 650 nm is of special interest. LED chips in this region comprise active regions out of the AlGaInP material system. To achieve low rise and fall times in the optical output, the current density has to be increased to levels about 400A/cm2. Hence the chip design needs ways to confine the current injection to a region significantly smaller than the chip itself. Conventional methods use epitaxially grown layers to ensure the lateral current spreading over the active region. But to confine the current to this region, the current spreading has to be eliminated locally. Typically, this is achieved by ion-implantation, mesa etching or selective oxidation of an AlGaAs layer of high Al-content. In this paper we present a new, planar, and very cost effective chip design for data rates around 250 MBit/s. No current spreading layer is included in the epitaxial growth, but is supplied during chip process using a transparent conductive oxide. Optical power around 2 mW at 20 mA without epoxy encapsulation, and rise and fall times around 2.5 ns have been reached.
High brightness AlGaInP thin-film resonant cavity LEDs with an emission wavelength around 650 nm are presented. The combination of a thin-film waveguide structure and a resonant cavity with an omnidirectional reflector (ODR) leads to significantly higher efficiencies compared to standard resonant cavity LED (RCLED) structures. Preliminary devices based on this configuration show external quantum efficiencies of 23% and 18% with and without encapsulation, respectively, despite a non-ideal detuning. These devices exhibit a narrow far-field pattern and are therefore adapted for applications requiring high brightness emitters such as for example plastic optical fiber communications. By opting for a negative detuning, i.e. a cavity resonance that is red-shifted compared to the intrinsic emission spectrum, even higher efficiencies should be achievable.
In Thinfilm LEDs, the substrate absorption of the generated light is avoided by a metal reflector between the light emitting layer and the substrate. The light extraction can be further enhanced by buried microreflectors or surface texturing. We demonstrate that the combination of these technologies gives prospects equal or superior to all other known approaches in terms of luminous efficiency and luminance. At a peak wavelength of 617 nm, we have obtained a luminous efficiency of 95.7 lm/W at 20 mA. We further analyze the internal and light extration efficiencies of our LEDs using raytracing simulations as well as a theoretical model for the internal efficiency. This analysis shows quantitatively that the efficient light extraction from InGaAlP thinfilm LEDs becomes more and more difficult when approaching shorter wavelengths.
The combination of wafer soldering using metal layers and the introduction of buried micro-reflector structures has proven to be a promising approach to fabricate high brightness, substrate-less LEDs in the AlGaInP material system. In addition to the enhanced light output, the scalability of this approach has been predicted as a major advantage. In contrast to other approaches, larger area LEDs can be fabricated without altering the epitaxial structure and thickness of layers simply by offering a larger area for light generation. First samples of amber (λ = 615 nm) buried micro-reflector LEDs with side-length up to 1000 μm have been realized. Devices mounted in packages with improved heat sinks are capable of low voltage CW operation with currents as high as 600 mA (Vfw≤ 2,8 V) without significant thermal flattening of the light-current characteristics. The maximum luminous flux achieved at these oeprating conditions is 46 lumen. Already these first experiments demonstrate the potential of the concept of buried micro-reflector LEDs not only for high-brightness but also for high-current operation. The results are among the best values of high-flux LEDs in this wavelength range.
The concept of an AlGaInP thin-film light emitting diode includes a structure of semiconductor layers with low optical absorption on which a highly reflective mirror is applied. After bonding this wafer to a suitable carrier, the absorbing GaAs substrate is removed. Subsequently, electrical contacts and an efficient light scattering mechanism for rays propagating within the chip is provided. To achieve high efficiency operation it is crucial to optimize all functional parts of the device, such as the mirror, contacts, and active layer. Different mirrors consisting of combinations of dielectrics and metals have been tested. New chip designs have been evaluated to reduce the absorption at the ohmic contacts of the device. For efficient light scattering, the surface roughness of the at the emission window has to be optimized.
Using these structures, and a thin active layer consisting of five compressively strained quantum wells, an external quantum efficiency of 40% is demonstrated at 650 nm. Further improvement is expected.
Since the AlGaInP material system can provide only poor carrier confinement for active layers emitting in the yellow wavelength regime, the internal efficiency of these LEDs is comparably low. In order to reduce the problem of carrier leakage, a yellow active region usually consists of some hundred nanometers of active material. To circumvent the problem of this highly absorbing active layer, a separation of the light generation and the area of light extraction is suggested for yellow thin-film LEDs. First results are presented in this paper.
Usually resonant-cavity light-emitting diodes (RCLEDs) are used as emitters for plastic optical fiber communication. However, there are some arguments that may lead to the introduction of RCLEDs in a much wider range of applications. A typical high-brightness AlGaInP LED consists of a Bragg mirror, the active region and some layers for current spreading and light extraction. The thickness of these layers can add up to several ten microns which causes long epitaxial growth times. The total thickness of a RCLED can be significantly lower. Furthermore, since no lattice mismatched layers such as GaP are involved, the total incorporated strain is low which simplifies wafer handling and device processing. For this reason we studied RCLEDs with a dominant wavelength around 632 nm (superred) and 605 nm (orange). The processes for epitaxial growth and chip fabrication were optimized for homogeneity on 4 inch wafers and suitability for low-cost mass production, respectively. Possible applications for our RCLEDs are optical scanners, indicators, signal lights and other applications which benefit from the enhanced directionality of RCLEDs.
There is a large number of new applications in lighting and display technology where high-brightness AlGaInP-LEDs can provide cost-efficient solutions for the red to yellow color range. Osram Opto Semiconductors has developed a new generation of MOVPE-grown AlInGaP-LEDs to meet these demands. Our structures use optimized epitaxial layer design, improved contact geometry and a new type of surface texturing. Based on this technology we achieve luminous efficiencies of more than 30 lm/W and wallplug efficiencies exceeding 10% of LEDs on absorbing GaAs substrates. The epitaxial structure does not require the growth of extremely thick window layer and standard processes are used for the chip fabrication. This allows for high production yields and cost-efficient production.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.