Atmospheric anisoplanatic effect is an important problem to be solved in telescope observation of space target imaging. Numerical simulation of atmospheric anisoplanatic imaging is the basis for studying the restoration of anisoplanatic images. Based on the propagation theory of light waves on the inhomogeneous turbulent path and multilayer phase screens distribution model, this paper establishes a theoretical model of atmospheric imaging for space targets under anisoplanatic conditions. The near-surface atmosphere can be divided into several stratifications of atmosphere at different altitudes. Find out the best phase screen distribution location for each atmospheric stratification, and use the multilayer phase screens at different altitudes to represent the atmospheric anisoplanatic effect. The phase change of the light wave emitted by each point on the space object through the atmosphere is represented by a phase screen, and the final phase size is the superposition of the phase of the light wave passing through the phase screens of each layer. A series of spatial target images are simulated by different layers of phase screens for anisoplanatic imaging, and combined with theoretical analysis to find the best phase screen position and the number of layers. The experimental results show that the three-layer phase screen can accurately simulate the atmospheric anisoplanatic imaging while maintaining the computational efficiency, and effectively reflect the changes of the point spread function (PSF) when the spatial position changes. The imaging results have no ringing and edge effects, and can accurately represent the influence of atmospheric anisoplanatic effect on atmospheric imaging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.