With the introduction of Augmented Reality, Virtual Reality, and Mixed Reality (AR/VR/MR) applications, the fabrication of photonics devices is approaching a high volume manufacturing level. To scale these products to consumer friendly dimensions, there is still significant shrink needed for many not yet available components such as ultrasmall cameras, metalenses, microdisplays, and combiner optics. AR/VR/MR optical components include metalenses patterned over large areas, and the fidelity of these patterns may have a significant impact on performance. In this study, we apply OPC to the design intent and examine the implication of various lithographic and correction techniques on metalens performance through simulation. In addition, we investigate the root causes of the manufacturing process variability and its impact on metalens functionality. These devices are analyzed by comparing light propagation through the simulated manufactured system using rigorous lithographic models to the optimal system based on the design intent. The study finds that the size and shape of meta-atoms have a different impact on optical performance, depending on the type of the metalens.
KEYWORDS: Optical proximity correction, Photomasks, Waveguides, Photonic devices, Lithography, Line edge roughness, Stochastic processes, Photonics, Signal to noise ratio
Photonics represents a growing opportunity to design and manufacture devices and integrated circuits for applications in high-speed data communications, advanced sensing, and imaging. Photonic technologies provide orders-of-magnitude speed improvements with reduced power consumption for data transmission and ultra-sensitive sensing capabilities in multiple application domains. Curvilinear patterns are required to maintain the physical properties of light propagation. We investigate the readiness of state-of-the-art mask synthesis tools to meet the challenges for photonics devices in terms of mask data preparation and verification. We apply OPC and ILT to photonic integrated circuit designs containing components sensitive to fabrication variation, to generate Manhattan and curvilinear mask data. Results are validated using a lithography verification tool considering smoothness of the printed curved structures, a key factor to maintain the correct functionality of the photonic devices. Rather than using ideal targets, we take simulation contours from corrected layouts for initial assessment of light propagation through wave guides. The impact of lithographic patterning related perturbations such as resist line edge roughness on optical performance is investigated based on results from a rigorous lithography process simulation model. Experimental data from fabricated devices underline the usefulness of lithography simulation to predict unwanted impact on device performance and the need of correction tools to counteract these effects.
Using the vertical integration of the Synopsys environment, we analyze a 2 2 integrated optical switch obtaining a layer-0 abstraction used to analyze the impact of the design options on transmission performances of a PM-64QAM 600G channel in multi-hop routing in meshed optical networks. The optical switch is designed targeting the Analog Photonics Process Design Kit. The QoT degradation depending on the design option and on the choice for the transmission technique is assessed, taking into account the number of traversed switches. In addition, different routing techniques for the integrated optical waveguides of the 2x2 switches are investigated in terms of system performances.
The reported analysis is an example of comprehensive investigation carried out by abstracting the network elements starting from the component design up to the networking management. This approach is today mandatory to enable the maximum capacity in state-of-the art optical networks. To face this challenging problem, Synopsys proposes a vertically integrated software environment for the design of optical communication systems with photonic integrated circuits: it is the integration of OptSim c -optical communication system, OptSim Circuit -schematic-driven photonic circuit, OptoDesigner c -mask layout, and RSoft component design tools. These tools have proven to be reliable aids to virtually designing and estimating the performance of optical transmission systems and photonic chips.
In this work, the simplified modeling of silicon phase modulators is presented along with a comparison among different options of modulators. The proposed simplified model enables a substantial reduction in computational effort while maintaining a good accuracy. The presented model is validated against complete 3D-simulations by means of the design of four different modulators. Furthermore, with the help of the model a deep insight on the performances tradeoffs in the choose and design of silicon modulators is provided.
Despite the advances in optical biosensors, the existing technological approaches still face two major challenges: the inherent inability of most sensors to integrate the optical source in the transducer chip, and the need to specifically design the optical transducer per application. In this work, the development of a radical optoelectronic platform is demonstrated based on a monolithic optocoupler array fabricated by standard Si-technology and suitable for multi-analyte detection. The platform has been specifically designed biochemical sensing. In the all-silicon array of transducers, each optocoupler has its own excitation source, while the entire array share a common detector. The light emitting devices (LEDs) are silicon avalanche diodes biased beyond their breakdown voltage and emit in the VIS-NIR part of the spectrum. The LEDs are coupled to individually functionalized optical transducers that converge to a single detector for multiplexed operation. The integrated nature of the basic biosensor scheme and the ability to functionalize each transducer independently allows for the development of miniaturized optical transducers tailored towards multi-analyte tests. The monolithic arrays can be used for a plethora of bio/chemical interactions becoming thus a versatile analytical tool. The platform has been successfully applied in bioassays and binding in a real-time and label-free format and is currently being applied to ultra-sensitive food safety applications.
Miniaturized bioanalytical devices find wide applications ranging from blood tests to environmental monitoring. Such
devices in the form of hand held personal laboratories can transform point-of-care monitoring provided miniaturization,
multianalyte detection and sensitivity issues are successfully resolved. Optical detection in biosensors is superior in
many respects to other types of sensing based on alternative signal transduction techniques, especially when both
sensitivity and label free detection is sought. The main drawback of optical biosensing transducers relates to the
unresolved manufacturability issues encountered when attempting monolithic integration of the light source. If the
mature silicon processing technology could be used to monolithically integrate optical components, including light
emitting devices, into complete photonic sensors, then the lab on a chip concept would materialize into a robust and
affordable way. Here, we describe and demonstrate a bioanalytical device consisting of a monolithic silicon optocoupler
properly engineered as a planar interferometric microchip. The optical microchip monolithically integrates silicon light
emitting diodes and detectors optically coupled through silicon nitride waveguides designed to form Mach-Zehnder
interferometers. Label free detection of proteins is demonstrated down to pM sensitivities.
We present a new class of low-loss integrated optical waveguide structures as CMOS-compatible industrial standard for photonic integration on silicon or glass. A TriPleXTM waveguide is basically formed by a -preferably rectangular- silicon nitride (Si3N4) shell filled with and encapsulated by silicon dioxide (SiO2). The constituent materials are low-cost stoichiometric LPVCD end products which are very stable in time. Modal characteristics, birefringence, footprint size and insertion loss are controlled by design of the geometry. Several examples of new applications will be presented to demonstrate its high potential for large-scale integrated optical circuits for telecommunications, sensing and visible light applications.
A thick, bimodal segment of specific length and height between two single mode sections of a planar waveguide can serve as an integrated optical interferometer. It is realized by etching a wide strip form a guiding film. A vertically guided, laterally unguided beam of light is then made to traverse the strip perpendicularly. For a wide range of materials the structure can be dimensioned such that it shows the proper behavior of an interferometer: depending on the phase gain of the two modes in the thick region, the guided light interferes either almost completely destructively at the transition to the output segment, i.e. the power is radiated away into the substrate and cover regions, or constructively, i.e. most of the power passes the device. We believe that for certain applications structures of this kind can be a simple substitute for instruments like Mach-Zehnder interferometers or directional couplers. This is illustrated by two numerically simulated examples: A polarizer constructed from silicon based waveguides, which offers 30 dB polarization discrimination and 0.1 dB insertion loss with a total length of only 10 micrometers, and a proposal for an integrated magneto optic isolator experiment, where the freedom in the lateral direction can be exploited for a proper tuning of the device.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.