Lidar, a technology at the heart of autonomous driving and robotic mobility, performs 3D imaging of a complex scene by measuring the time of flight of returning light pulses. Many technological challenges, including enhancement of the observation field of view (FoV), acceleration of the imaging frame rate, improvement of the ambiguity range, reduction of fabrication cost, and component size, must be simultaneously addressed so that lidar technology reaches the performance needed to strongly impact the global market. We propose an innovative solution to address the problem of wide FoV and extended unambiguous range using an acousto-optic modulator that rapidly scans a large-area metasurface deflector. We further exploit a multiplexing illumination technique traditionally deployed in the context of telecommunication theory to extend the ambiguity range and to drastically improve the signal-to-noise ratio of the measured signal. Compacting our metasurface-scanning lidar system to chip-scale dimension would open new and exciting perspectives, eventually relevant to the autonomous vehicles and robotic industries.
This work is based on the concept of integrating metasurfaces as passive elements to enhance LiDAR capabilities. We demonstrated a proof-of-concept of a LiDAR imaging system capable of acquire images at 1 million of frames per second using a faster scanner active device with a field of view up to 150°X150°. The active element redirects the light into a metasurface deflector which enhances the field of view. MHz imaging rate and 3D imaging is demonstrated. Finally, we discuss applications and limitations of using such approach, which is a strong candidate to pave the way into full autonomous vehicles.
Glasses are important materials for novel technologies, as their properties can be tailored by doping and compositional changes. Furthermore, glasses can also be microstructured, making them interesting for optical and photonic applications. Corning Gorilla Glass is an alkali aluminosilicate glass commonly used as protective layer in smart phones and tablets thanks to its outstanding mechanical properties. Recently, it has been demonstrated the use of femtosecond direct laser writing of waveguides in Gorilla Glass, prompting it for integrated photonic/electronic devices. Therefore, it is important to study the nonlinear optical properties of Gorilla Glass as well as their laser-inscribed waveguides, since the effects of the laser writing process on the nonlinearity are not totally understood.
Here we investigate the third-order nonlinear optical properties of waveguides fs-pulses written waveguides in Gorilla Glass, by using the Dispersive-scan (D-scan) method. The nonlinear refractive index measured in the waveguide is lower than the one for the pristine material and its value depends on the writing pulse energy. For waveguides fabricated with pulse energy of 250 nJ, for instance, n2 is about three times lower than the one for the pristine sample. Micro Raman measurements were performed in the microstructured material in order to better understand the mechanisms of laser modification. Raman spectroscopy revealed the reduction and broadening of the high-frequency band related to non-bridging oxygens, which can explain the decrease of n2. Therefore, our results not only show the potential of using D-scan for waveguides nonlinear characterization, but also demonstrate and interpret the decrease of the nonlinear index of refraction in fs-laser micromachined waveguides in Gorilla Glass, which potential implications for photonic devices.
Ultrafast waveguide fabrication has been an active research area since its demonstration, leading to numerous applications. Recently reported high quality waveguide in Gorilla Glass has promoted it as a good candidate for optical devices. In this study, 120-fs laser pulses centered at 520, 650 and 775 nm at a repetition rate of 1 kHz were applied to investigate the influence of the wavelength on micromachining. Grooves ablated onto Gorilla Glass surface with different pulse energies and scanning speeds presented similar features and threshold pulse energy, regardless the excitation wavelength. Fifteen millimeter long waveguides were produced 100 μm below sample surface with pulse energy varying from 250 nJ up to 5 μJ (scanning speed of 200 μm/s). Waveguides longitudinal and transversal profiles were analyzed via optical microscopy and its guiding properties characterized in an objective-lens based coupling system at 633 and 775 nm. Guide modes intensity distribution show that for waveguides fabricated with higher pulse energy light is guided further from the core, while for lower fabrication energy light is guided closer to the center in a more fundamental mode. Considering that light traveling through 15 mm of material in confined mode, we coupled 775 nm fs-pulses into fabricated waveguides. By monitoring the spectrum of the guided light as input pulse energy increased, spectral broadening assigned to self-phase modulation effects was observed followed by white-light generation starting at 450 nm. In conclusion, we found that micromachining on Gorilla Glass is wavelength independent and inscribed waveguides present desirable nonlinear features.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.