Comprehension about the behavior of the Planet Boundary Layer (PBL) is an important factor in several fields, from analysis about air quality until modeling. However, monitoring the PBL evolution is a complex problem, because few instruments can provide continuous atmospheric measurements with enough spatial and temporal resolution. Inside this scenario lidar systems appear as an important tool, because it complies with all these capabilities- However, PBL observations are not a direct measure, being necessary to use complex mathematic algorithms. Recently, wavelet covariance transforms have been applied in this field. The objective of this work is to compare the performing of distinct types of algorithms: a structured on Haar wavelet and other based on first derivative of Gaussian and Mexican Hat wavelets, and the results were compared with two Hysplit modelling. For this aim, two campaigns were carried out. From the results were possible to infer that both algorithms provide coherent results as the expected, but the Haar algorithm separates the sub-layers more efficiently, so it is the most appropriate to complex situations.
In this study, a mapping of the soot extinction coefficient in an oil refinery flare using a three-wavelength elastic backscatter lidar system is presented. A log-normal aerosol size distribution was assumed for the flare, and a homogenous refractive index was assumed along the nearly horizontal beam path through the atmosphere, excluding the flare volume. The optical depth was estimated for each wavelength and from this the Angstr¨om exponent was calculated. The results were comparable with the literature, demonstrating that it is possible to distinguish small from large particles by this technique in low wind conditions.
The main objective of this work is to obtain methods that automatically allow qualitative detections of Atmospheric Boundary Layer heights from LIDAR data. Case studies will be used to describe the more relevant days of a campaign carried out in July of 2012 in Vitória, Espírito Santo, Brazil. The data analysis compares three mathematical algorithms that automatically provide the ABL height: Gradient Method (GM), using the derivative of the Range Corrected Signal (RCS) logarithm, WCT (Wavelet Covariance Transform), and Bulk Richardson's Number, which was used to validate the methods mentioned above. The comparison between the methods has shown that as the presence of clouds and the aerosol sublayer increased, the more sensitive was the refinement needed to choose the “right” parameters, whereas even Richardson’s method had ambiguities in finding a good estimate of the ABL top.
Elastic backscatter LIDAR systems have been used to determine aerosol profile concentration in several areas such as weather, pollution and air quality monitoring. In order to determine the aerosol extinction and backscattering profiles, the Klett inversion method is largely used, but this method suffers from lack of information since there are two unknown variables to be determined using only one measured LIDAR signal, and assumption of the LIDAR ratio (the relation between the extinction and backscattering coefficients) is needed. When a Raman LIDAR system is used, the inelastic backscattering signal is affected by aerosol extinction but not by aerosol backscatter, which allows this LIDAR to uniquely determine extinction and backscattering coefficients without any assumptions or any collocated instruments. The MSP-LIDAR system, set-up in a highly dense suburban area in the city of São Paulo, has been upgraded to a Raman LIDAR, and in its actual 6-channel configuration allows it to monitor elastic backscatter at 355 and 532 nm together with nitrogen and water vapor Raman backscatters at 387nm and 608 nm and 408nm and 660 nm, respectively. Thus, the measurements of aerosol backscattering, extinction coefficients and water vapor mixing ratio in the Planetary Boundary Layer (PBL) are becoming available. The system will provide the important meteorological parameters such as Aerosol Optical Depth (AOD) and will be used for the study of aerosol variations in lower troposphere over the city of São Paulo, air quality monitoring and for estimation of humidity impact on the aerosol optical properties, without any a priori assumption. This study will present the first results obtained with this upgraded LIDAR system, demonstrating the high quality of obtained aerosol and water vapor data. For that purpose, we compared the data obtained with the new MSP-Raman LIDAR with a mobile Raman LIDAR collocated at the Center for Lasers and Applications, Nuclear and Energy Research Institute in São Paulo and radiosonde data from Campo de Marte Airport, in São Paulo.
In vivo molecular fluorescence tomography of brain disease mouse models has two very specific demands on the optical setup: the use of pigmented furry mice does not allow for a purely noncontact setup, and a high spatial accuracy is required on the dorsal side of the animal due to the location of the brain. We present an optimized setup and tomographic scheme that meet these criteria through a combined CW reflectance-transmittance fiber illumination approach and a charge-coupled device contactless detection scheme. To consider the anatomy of the mouse head and take short source detector separations into account, the forward problem was evaluated by a Monte Carlo simulation input with a magnetic resonance image of the animal. We present an evaluation of reconstruction performance of the setup under three different condition. (i) Using a simulated dataset, with well-defined optical properties and low noise, the reconstructed position accuracy is below 0.5 mm. (ii) Using experimental data on a cylindrical tissue-simulating phantom with well-defined optical properties, a spatial accuracy of about 1 mm was found. (iii) Finally, on an animal model with a fluorescent inclusion in the brain, the target position was reconstructed with an accuracy of 1.6 mm.
Jerome Kasparian, Riad Bourayou, Veronique Boutou, Catherine Favre, Guillaume Mejean, Didier Mondelain, Andre Mysyrowicz, Miguel Rodriguez, Estelle Salmon, Roland Sauerbrey, Holger Wille, Jean-Pierre Wolf, Ludger Woeste, Jin Yu, L. Klingbeil, K. Rethmeier, W. Kalkner, A. Hartzes, H. Lehman, J. Eisloeffel, Bringfried Stecklum, J. Winkler, Uwe Laux, S. Hoenger, Yong-Le Pan, Richard Chang, Steve Hill
The propagation of ultrashort, ultra-intense laser pulses gives rise to strongly nonlinear processes. In particular, filamentation is observed, yielding an ionized, conducting plasma channel where white-light supercontinuum due to self-phase modulation occurs. This supercontinuum, extending from the UV to the IR, is a suitable "white laser" source for atmospheric remote sensing, and especially Lidar (Light Detection and Ranging). Recent significant results in this regard are presented, as well as lightning control using ultrashort laser pulses. The application of ultrashort-pulse lidar to aerosol monitoring is also discussed.
High-power femtosecond laser pulses can lead to strong nonlinear interactions during the propagation through a medium. In air the well known self-guiding effect produces long intense and moderately ionized filaments, in which a broad white-light continuum from the near UV to the mid IR is generated. The forward directed white-light can be used to do range resolved broadband absorption measurements, which opens the way to a real multi-component lidar for the simultaneous detection of several trace gases. On the other hand, enhanced nonlinear scattering and characteristic emission from the filament region, as well as from the interaction of intense pulses with aerosols, can be observed. This opens perspectives towards a novel kind of analysis of atmospheric constituents, based upon nonlinear optics. Additionally, the conductivity of the filaments can be used for lightning control. Here we present the basic concepts of the femtosecond lidar, laboratory experiments and recent results of atmospheric measurements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.