Diffusion doped p-i-n/p-n diodes in SOI substrate is proposed for the fabrication of active silicon photonics devices with scalable waveguide cross-sections. The p-type and n-type diffusion doping parameters are optimized for the fabrication of tunable single-mode waveguide phase-shifters with microns to submicron cross-sectional dimensions. The simulations results show that the shape of depletion layer can be effectively engineered by suitably positioning the rib waveguide with respect to the gap between doping windows. We could thus introduce an additional control parameter to optimize over-all figure of merits of the phase-shifter for various applications. For an optimized set of diffusion parameters, the VπLπ of single-mode waveguides designed with 1μm, 0.5μm, and 0.25μm device layers (under reverse bias operating in TE-polarization at λ ~ 1550 nm) are found as 2.7 V-cm, 2.1 V-cm, and 1.6 V-cm, respectively. The typical p-n junction capacitance of an optimized 0.25μm single-mode waveguide is estimated to be < 0.5 fF/μm, which is comparable to that of ion-implanted p-n waveguide junctions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.