MIRI ('Mid InfraRed Instrument') is the combined imager and integral field spectrometer for the 5-29 micron wavelength range under development for the James Webb Space Telescope JWST. The flight acceptance tests of the Spectrometer Main Optics flight models (SMO), part of the MIRI spectrometer, are completed in the summer of 2008 and the system is delivered to the MIRI-JWST consortium.
The two SMO arms contain 14 mirrors and form the MIRI optical system together with 12 selectable gratings on grating wheels. The entire system operates at a temperature of 7 Kelvin and is designed on the basis of a 'no adjustments' philosophy. This means that the optical alignment precision depends strongly on the design, tolerance analysis and detailed knowledge of the manufacturing process. Because in principle no corrections are needed after assembly, continuous tracking of the alignment performance during the design and manufacturing phases is important.
The flight hardware is inspected with respect to performance parameters like alignment and image quality. The stability of these parameters is investigated after exposure to various vibration levels and successive cryogenic cool downs. This paper describes the philosophy behind the acceptance tests, the chosen test strategy and reports the results of these tests. In addition the paper covers the design of the optical test setup, focusing on the simulation of the optical interfaces of the SMO. Also the relation to the SMO qualification and verification program is addressed.
METIS is one the first three instruments on the E-ELT. Apart from diffraction limited imaging, METIS will provide coronagraphy and medium resolution slit spectroscopy over the 3 – 19μm range, as well as high resolution (R ~ 100,000) integral field spectroscopy from 2.9 – 5.3μm, including a mode with extended instantaneous wavelength coverage. The unique combination of these observing capabilities, makes METIS the ideal instrument for the study of circumstellar disks and exoplanets, among many other science areas. In this paper we provide an update of the relevant science drivers, the METIS observing modes, the status of the simulator and the data analysis. We discuss the preliminary design of the optical system, which is driven by the need to calibrate observations at thermal IR wavelengths on a six-mirror ELT. We present the expected adaptive optics performance and the measures taken to enable high contrast imaging. We describe the opto-mechanical system, the location of METIS on the Nasmyth instrument platform, and conclude with an update on critical subsystem components, such as the immersed grating and the focal plane detectors. In summary, the work on METIS has taken off well and is on track for first light in 2025.
METIS is the Mid-infrared E-ELT Imager and Spectrograph, which will provide outstanding observing capabilities, focusing on high angular and spectral resolution. It consists of two diffraction-limited imagers operating in the LM and NQ bands respectively and an IFU fed diffraction-limited high-resolution (R=100,000) LM band spectrograph. These science subsystems are preceded by the common fore optics (CFO), which provides the following essential functionalities: calibration, chopping, image de-rotation, thermal background and stray light reduction. We show the evolution of the CFO optical design from the conceptual design to the preliminary optical design, detail the optimization steps and discuss the necessary trade-offs.
METIS, the Mid-nfrared E-ELT Imager and Spectrometer, will be providing high-sensitivity imaging and high-resolution spectroscopy in the mid-infrared (3-19 micrometer) to the E-ELT. In order to achieve the exceptional performance required by its driving science cases, exoplanets and proto-planetary disks, METIS will be featuring two Adaptive Optics (AO) systems — a first-light Single Conjugate Adaptive Optics (SCAO) system, complemented by a Laser Tomographic Adaptive Optics (LTAO) system, most likely, a few years after first light. METIS, being one of the three first light science instruments on the European Extremely Large Telescope (E-ELT), will be one of the first instruments using the integrated deformable mirror of the E-ELT for its Adaptive Optics (AO) correction.
The internal SCAO system designed to maximize the performance for bright targets and has its wavefront sensors (WFSs) build inside the METIS cryostat to minimize the number of warm surfaces towards the science detectors. Although the internal dichroic will reflect all light short wards of 3 micrometers towards the WFS, only the IR light will most likely be used, mainly due to the expected improved performance at longer wavelengths for the WFS. A trade-off has been made between both visible versus infrared wave front sensing as well as Pyramid versus Shack-Hartmann, under various observing conditions and target geometries, taking into account performance, target availability, reliability and technology readiness level. The base line for the SCAO system is to minimize system complexity, thereby ensuring system availability and reliability even under first-light conditions.
Since the SCAO system will require a bright guide star near the science target, it can only be used for a limited number of targets. The LTAO system, consisting of up to 6 LGS and up to 3 low-order NGS WFS and located outside the cryostat, is designed to increase the sky coverage on arbitrary targets to >80%. Investigations are ongoing if the internal SCAO system can be used as either a Low-Order WFS or metrology system.
The Atacama Large Millimeter/submillimeter Array (ALMA) is a joint project between astronomical organizations in
Europe, North America, and East Asia, in collaboration with the Republic of Chile. ALMA will consist of at least 54
twelve-meter antennas and 12 seven-meter antennas operating as an aperture synthesis array in the (sub)millimeter
wavelength range. It is the responsibility of ALMA AIV to deliver the fully assembled, integrated, and verified antennas
(array elements) to the telescope array.
After an initial phase of infrastructure setup AIV activities began when the first ALMA antenna and subsystems became
available in mid 2008. During the second semester of 2009 a project-wide effort was made to put in operation a first 3-
antenna interferometer at the Array Operations Site (AOS). In 2010 the AIV focus was the transition from event-driven
activities towards routine series production. Also, due to the ramp-up of operations activities, AIV underwent an
organizational change from an autonomous department into a project within a strong matrix management structure.
When the subsystem deliveries stabilized in early 2011, steady-state series processing could be achieved in an efficient
and reliable manner. The challenge today is to maintain this production pace until completion towards the end of 2013.
This paper describes the way ALMA AIV evolved successfully from the initial phase to the present steady-state of array
element series processing. It elaborates on the different project phases and their relationships, presents processing
statistics, illustrates the lessons learned and relevant best practices, and concludes with an outlook of the path towards
completion.
S. Asayama, L. B. Knee, P. Calisse, P. Cortés, R. Jager, B. López, C. López, T. Nakos, N. Phillips, M. Radiszcz, R. Simon, I. Toledo, N. Whyborn, H. Yatagai, J. McMullin, P. Planesas
The Atacama Large Millimeter/submillimeter Array (ALMA) will consist of at least 54 twelve-meter antennas and 12
seven-meter antennas operating as an aperture synthesis array in the (sub)millimeter wavelength range. The ALMA
System Integration Science Team (SIST) is a group of scientists and data analysts whose primary task is to verify and
characterize the astronomical performance of array elements as single dish and interferometric systems. The full set of
tasks is required for the initial construction phase verification of every array element, and these can be divided roughly
into fundamental antenna performance tests (verification of antenna surface accuracy, basic tracking, switching, and on-the-fly rastering) and astronomical radio verification tasks (radio pointing, focus, basic interferometry, and end-to-end
spectroscopic verification). These activities occur both at the Operations Support Facility (just below 3000 m elevation)
and at the Array Operations Site at 5000 m.
MIRI ('Mid Infrared Instrument') is the combined imager and integral field spectrometer for the 5-29 micron wavelength
range under development for the JWST. The Flight Model development of the Spectrometer Main Optics (SMO)
consisted of small design changes to improve optical performance, structural (dynamic) behaviour and integration based
on the experience and verification results of the previous Qualification and Verification models. A full test program was
performed in order to keep test efforts at the higher MIRI level as small as possible. The flight model underwent full
optical as well as mechanical qualification testing. In December 2008 the SMO was shipped, after successful integration
and verification, for final integration within the MIRI instrument.
This paper will describe the Flight Model improvements (based on the Qualification and Verification Model test results),
the problems and issues encountered during integration and verification and the verification test results.
ESO and a large European consortium completed the phase-A study of EPICS, an instrument dedicated to exoplanets
direct imaging for the EELT. The very ambitious science goals of EPICS, the imaging of reflected light of mature gas
giant exoplanets around bright stars, sets extremely strong requirements in terms of instrumental contrast achievable. The
segmented nature of an ELT appears as a very large source of quasi-static high order speckles that can impair the
detection of faint sources with small brightness contrast with respect to their parent star. The paper shows how the
overall system has been designed in order to maximize the efficiency of quasi-static speckles rejection by calibration and
post-processing using the spectral and polarization dependency of light waves. The trade-offs that led to the choice of the
concepts for common path and diffraction suppression system is presented. The performance of the instrument is
predicted using simulations of the extreme Adaptive Optics system and polychromatic wave-front propagation through
the various optical elements.
EPOL is the imaging polarimeter part of EPICS (Exoplanet Imaging Camera and Spectrograph) for the 42-m E-ELT. It
is based on sensitive imaging polarimetry to differentiate between linearly polarized light from exoplanets and
unpolarized, scattered starlight and to characterize properties of exoplanet atmospheres and surfaces that cannot be
determined from intensity observations alone. EPOL consists of a coronagraph and a dual-beam polarimeter with a
liquid-crystal retarder to exchange the polarization of the two beams. The polarimetry thereby increases the contrast
between star and exoplanet by 3 to 5 orders of magnitude over what the extreme adaptive optics and the EPOL
coronagraph alone can achieve. EPOL operates between 600 and 900 nm, can select more specific wavelength bands
with filters and aims at having an integral field unit to obtain linearly polarized spectra of known exoplanets. We present
the conceptual design of EPOL along with an analysis of its performance.
The Mid Infrared Instrument (MIRI) aboard JWST is equipped with one filter wheel and two dichroic-grating wheel
mechanisms to reconfigure the instrument between observing modes such as broad/narrow-band imaging, coronagraphy
and low/medium resolution spectroscopy. Key requirements for the three mechanisms with up to 18 optical elements on
the wheel include: (1) reliable operation at T = 7 K, (2) high positional accuracy of 4 arcsec, (3) low power dissipation,
(4) high vibration capability, (5) functionality at 7 K < T < 300 K and (6) long lifetime (5-10 years). To meet these
requirements a space-proven wheel concept consisting of a central MoS2-lubricated integrated ball bearing, a central
torque motor for actuation, a ratchet system with monolithic CuBe flexural pivots for precise and powerless positioning
and a magnetoresistive position sensor has been implemented. We report here the final performance and lessons-learnt
from the successful acceptance test program of the MIRI wheel mechanism flight models. The mechanisms have been
meanwhile integrated into the flight model of the MIRI instrument, ready for launch in 2014 by an Ariane 5 rocket.
Presently, dedicated instruments at large telescopes (SPHERE for the VLT, GPI for Gemini) are about to discover and
explore self-luminous giant planets by direct imaging and spectroscopy. The next generation of 30m-40m ground-based
telescopes, the Extremely Large Telescopes (ELTs), have the potential to dramatically enlarge the discovery space
towards older giant planets seen in reflected light and ultimately even a small number of rocky planets. EPICS is a
proposed instrument for the European ELT, dedicated to the detection and characterization of Exoplanets by direct
imaging, spectroscopy and polarimetry. ESO completed a phase-A study for EPICS with a large European consortium
which - by simulations and demonstration experiments - investigated state-of-the-art diffraction and speckle suppression
techniques to deliver highest contrasts. The paper presents the instrument concept and analysis as well as its main
innovations and science capabilities. EPICS is capable of discovering hundreds of giant planets, and dozens of lower
mass planets down to the rocky planets domain.
The Mid-Infrared Instrument (MIRI) of the James Webb Space Telescope, scheduled for launch in 2013, will provide a
variety of observing modes such as broad/narrow-band imaging, coronagraphy and low/medium resolution
spectroscopy. One filter wheel and two dichroic-grating wheel mechanisms allow to configure the instrument between
the different observing modes and wavelength ranges. The main requirements for the three mechanisms with up to 18
positions on the wheel include: (1) reliable operation at T ~ 7 K, (2) optical precision, (3) low power dissipation, (4)
high vibration capability, (5) functionality at 6 K < T < 300 K and (6) long lifetime (5-10 years). To meet these stringent
requirement, a space-proven mechanism design based on the European ISO mission and consisting of a central bearing
carrying the optical wheels, a central torque motor for wheel actuation, a ratchet system for precise and powerless
positioning and a magnetoresistive position sensor has been selected. We present here the detailed design of the flight
models and report results from the extensive component qualification.
MIRI ('Mid Infrared Instrument') is the combined imager and integral field spectrometer for the 5-29 micron wavelength
range under development for the JWST. In March 2007 the qualification and verification phase of the Spectrometer Main
Optics (SMO), part of the MIRI spectrometer came to an end. In this phase it is shown that the SMO subsystem can
provide the necessary performance and withstand the harsh environments of a launch and outer space. In this phase
different models of the SMO have been inspected with respect to performance parameters like alignment and image
quality and have been exposed to vibration tests and successive cryogenic cool downs. This paper will describe the
philosophy behind the verification plan, the chosen test strategy and reports the results of these tests. In addition the
paper covers the design of the optical test setup, focusing on the simulation of the optical interfaces of the SMO.
Since the start of the design efforts in 2003, the design of the Optical Bench Assembly for MIRI is detailed and finalized. MIRI ('Mid Infrared Instrument') is the combined imager and integral field spectrometer for the mid infrared under development for the James Webb Space Telescope. MIRI is developed by a combined European-US Consortium. As part of this consortium, ASTRON develops the Spectrometer Main Optics Working in such a large international
consortium requires focus on traceability of requirements, design, interface and verification data. This is achieved using
several systems engineering practices like requirement analyses and allocation, technical performance management and configuration management. These processes are tailored to the complexity and scale of the project. The paper summarizes these practices and provides examples of the tailoring process and system engineering tools used.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.