Raytheon is developing NIR sensor chip assemblies (SCAs) for scanning and staring 3D LADAR systems. High
sensitivity is obtained by integrating high performance detectors with gain, i.e., APDs with very low noise Readout
Integrated Circuits (ROICs). Unique aspects of these designs include: independent acquisition (non-gated) of pulse
returns, multiple pulse returns with both time and intensity reported to enable full 3D reconstruction of the image.
Recent breakthrough in device design has resulted in HgCdTe APDs operating at 300K with essentially no excess noise
to gains in excess of 100, low NEP <1nW and GHz bandwidths and have demonstrated linear mode photon counting.
SCAs utilizing these high performance APDs have been integrated and demonstrated excellent spatial and range
resolution enabling detailed 3D imagery both at short range and long ranges. In the following we will review progress in
real-time 3D LADAR imaging receiver products in three areas: (1) scanning 256 × 4 configuration for the Multi-Mode
Sensor Seeker (MMSS) program and (2) staring 256 × 256 configuration for the Autonomous Landing and Hazard
Avoidance Technology (ALHAT) lunar landing mission and (3) Photon-Counting SCAs which have demonstrated a
dramatic reduction in dark count rate due to improved design, operation and processing.
Raytheon is developing NIR sensor chip assemblies (SCAs) for scanning and staring 3D LADAR systems. High
sensitivity is obtained by integrating high performance detectors with gain, i.e., APDs with very low noise Readout
Integrated Circuits (ROICs). Unique aspects of these designs include: independent acquisition (non-gated) of pulse
returns, multiple pulse returns with both time and intensity reported to enable full 3D reconstruction of the image.
Recent breakthrough in device design has resulted in HgCdTe APDs operating at 300K with essentially no excess noise
to gains in excess of 100, low NEP <1nW and GHz bandwidths and have demonstrated linear mode photon counting.
SCAs utilizing these high performance APDs have been integrated and demonstrated excellent spatial and range
resolution enabling detailed 3D imagery both at short range and long ranges. In the following we will review progress in
real-time 3D LADAR imaging receiver products in two areas: (1) scanning 256 × 4 configuration for the Multi-Mode
Sensor Seeker (MMSS) program and (2) staring 256 × 256 configuration for the Autonomous Landing and Hazard
Avoidance Technology (ALHAT) lunar landing mission.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.