IXPE has been a highly successful mission, opening a new window in X-ray astronomy. IXPE observations have highlighted the importance of polarimetry along with spectroscopy in determining the geometry and physics behind many high-energy emissions from black hole X-ray binaries (BHXRBs), Pulsar Wind Nebulae (PWN), Active Galactic Nuclei (AGN) etc. However, IXPE is just the first step towards future wide band (0.1 to 100 keV) X-ray polarimetry. The future of this field demands larger effective areas, better energy resolution, and broader energy bands. IXPE is barely capable to address key scientific cases such as reflection features in X-ray binaries, molecular clouds around the Galactic Center, radio-quiet AGNs, non-thermal emission regions in supernova remnants etc. To take advantage of the recent advances in X-ray optics, gaseous detectors with different thickness, pressures and gas mixtures would be required. Using next-generation ASICs, like Timepix3, it is possible to have parallel fast readout, providing simultaneous time and charge information for each pixel, enabling 3D imaging of photoelectron tracks. In this article, we explore such a possibility using GridPix detectors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.