Presently quantum-cascade (QC) lasers enable emission at the wavelengths ranging from infrared to terahertz making them ideal light source for the distant detection of harmful gases and free-space optical communication. In those applications, requirements for the lasers include: narrow, single-fundamental-mode operation, low-divergent emitted beam, low threshold current and high speed modulation. Those properties are inherently owned by vertical-cavity surface-emitting lasers (VCSELs). However, when a QC is embedded into conventional vertical cavity, stimulated emission is impossible, because of the absence of the vertical electromagnetic wave component, which makes fundamentally impossible fabrication of QC VCSELs in their conventional design.
We propose a design of QC VCSEL in which top DBR mirror is replaced with a monolithic high-refractive-index contrast grating (MHCG). QCs are embedded within the MHCG stripes where the vertical component of the electromagnetic field is induced, enabling stimulated emission from the QCs.
Using a three-dimensional, fully vectorial optical model combined with an electrical model and gain model we discuss the distribution of the optical field, threshold current, emitted optical power and wall-plug efficiency of a 9 micro m AlInAs/InGaAs/InP QC VCSEL. Our anticipation shows that threshold current of QC VCSELs can be as low as 0.09 mA and the wall-plug efficiency at the level of 4%. We consider methods of current injection to active regions as well as methods of current and optical confinement.
The fabrication possibility of QC VCSELs opens new perspectives for merging the advantages of VCSELs with those of QCLs.
Quantum-cascade vertical-cavity surface-emitting lasers (QC VCSELs) [1] combine features
of VCSELs in respect of low threshold current, high quality of output beam, possible high speed modulation and fabrication of two dimensional phase-coupled arrays and quantum cascade lasers (QCLs) due to their emission in a broad range of infrared radiation up to about 100 m.
In those structures vertical resonance and stimulated emission of photons is possible due to embedding QCs in the stripes of a monolithic high-refractive-index contrast grating (MHCG). Unipolar QCs provide flexibility in the number of the active regions used in the structure, leading to designs with distributed active regions enabling efficient stimulated emission. The expected high performance of QC VCSELs relies on sophisticated designing of MHCG and active regions which takes into account distributions of the QC VCSEL modes. Spatial distributions of modes are highly unintuitive and anticipation of them requires the use of numerical methods solving fully vectorial Maxwell eigenvalue problem.
In this article, we present the principles of QC VCSELs designing illustrated by examples of optimization of a structure emitting at the wavelength of 9 µm. Particularly, we demonstrate optimization of the MHCGs, the resonant cavities and the numbers of active regions in QC VCSELs. In this contribution, optimal designs with respect to minimal threshold current and maximal output power are presented.
[1] T. Czyszanowski: Quantum Cascade Vertical Cavity Surface Emitting Laser, IEEE Photon. Technol. Lett. vol.29, pp. 351-354, 2018
A new structure of semiconductor lasers called the quantum-cascade vertical-cavity surface emitting laser (QC VCSEL) is proposed in the present paper. A structure of the QC VCSEL is a cross of the quantum-cascade laser (QCL) and the vertical-cavity surface-emitting laser (VCSEL). The QC VCSEL is expected to demonstrate important advantages of laser emission of both the QCL and the VCSEL without their drawbacks. In the QC VCSEL, the monolithic highcontrast grating (MHCG) structure is applied to cope with the fundamental requirement of the polarization direction of the electro-magnetic radiation perpendicular to the quantum cascade (QC) necessary to initiate within it the stimulated emission. The QC VCSEL structure recommended in the present paper is a result of the advanced modeling with the aid of our comprehensive self-consistent optical-electrical model.
This paper shows the possibility of stimulated emission in quantum cascades (QC) embedded in a vertical cavity and proposes a design for the first quantum-cascade vertical-cavity surface-emitting laser (QC VCSEL). In the proposed design, the top VCSEL mirror is a monolithic high-refractive-index contrast grating (MHCG), which serves as both an optical coupler and as the region in which the vertical component of the electrical field is induced, enabling stimulating emission from the quantum cascades. Using a three-dimensional, fully vectorial optical model, a stand-alone MHCG is analysed in terms of its possible use as a QC VCSEL mirror. The distribution of the optical field and threshold gain in VCSELs with QC embedded in MHCG are also simulated.
This paper proposes a design for the monolithic high-contrast mirror designed for infrared radiation. We use a fully vectorial model to search for the construction parameters of semiconductor monolithic high-contrast grating (MHCG) mirror providing maximal power reflectance. Such mirror can play a role of optical coupler, being alternative for distributed Bragg reflectors (DBRs). DBRs for mid- and long-wavelength infrared radiation are technologically highly demanding in terms of uniform quarter-wavelength layers control. Our results comprise a complete image of possible highly reflecting MHCG mirror constructions for potential use in optoelectronic infrared devices and systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.