In preparation for the operational phase of the Nancy Grace Roman Space Telescope, NASA has created the Coronagraph Community Participation Program (CPP) to prepare for and execute Coronagraph Instrument technology demonstration observations. The CPP is composed of 7 small, US-based teams, selected competitively via the Nancy Grace Roman Space Telescope Research and Support Participation Opportunity, members of the Roman Project Team, and international partner teams from ESA, JAXA, CNES, and the Max Planck Institute for Astronomy. The primary goals of the CPP are to prepare simulation tools, target databases, and data reduction software for the execution of the Coronagraph Instrument observation phase. Here, we present the current status of the CPP and its working groups, along with plans for future CPP activities up through Roman’s launch. We also discuss plans to potentially enable future commissioning of currently-unsupported modes.
The Coronagraphic Instrument onboard the Nancy Grace Roman Space Telescope is an important stepping stone towards the characterization of habitable, rocky exoplanets. In a technology demonstration phase conducted during the first 18 months of the mission (expected to launch in late 2026), novel starlight suppression technology may enable direct imaging of a Jupiter analog in reflected light. Here we summarize the current activities of the Observation Planning working group formed as part of the Community Participation Program. This working group is responsible for target selection and observation planning of both science and calibration targets in the technology demonstration phase of the Roman Coronagraph. We will discuss the ongoing efforts to expand target and reference catalogs, and to model astrophysical targets (exoplanets and circumstellar disks) within the Coronagraph’s expected sensitivity. We will also present preparatory observations of high priority targets.
Combining adaptive optics and interferometric observations results in a considerable contrast gain compared to single-telescope, extreme AO systems. Taking advantage of this, the ExoGRAVITY project is a survey of known young giant exoplanets located in the range of 0.1” to 2” from their stars. The observations provide astrometric data of unprecedented accuracy, being crucial for refining the orbital parameters of planets and illuminating their dynamical histories. Furthermore, GRAVITY will measure non-Keplerian perturbations due to planet-planet interactions in multi-planet systems and measure dynamical masses. Over time, repetitive observations of the exoplanets at medium resolution (R = 500) will provide a catalogue of K-band spectra of unprecedented quality, for a number of exoplanets. The K-band has the unique properties that it contains many molecular signatures (CO, H2O, CH4, CO2). This allows constraining precisely surface gravity, metallicity, and temperature, if used in conjunction with self-consistent models like Exo-REM. Further, we will use the parameter-retrieval algorithm petitRADTRANS to constrain the C/O ratio of the planets. Ultimately, we plan to produce the first C/O survey of exoplanets, kick-starting the difficult process of linking planetary formation with measured atomic abundances.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.