Supramolecular self-assembly is showcased as a powerful tool for controlling exciton interactions and light polarization for organic optoelectronics. We will discuss a supramolecular pseudo-cube assembled from PDI chromophores with enhanced brightness, in which we observe an excited multimer state using ultrafast spectroscopy. Moreover, we show the precise engineering of DPP chromophore stacks, of which an exceptionally bright Pd2L2L’2 (>50% PLQY) benefits from an intra-assembly FRET process. Finally, the concept of chirality for light polarization control using supramolecular engineering will be explored.
KEYWORDS: Perovskite, Modulation, Luminescence, Optoelectronics, Process control, Tandem solar cells, Solar energy, Solar cells, Semiconductors, Quantum efficiency
Using transient optical spectroscopies, we study excitation recombination dynamics in manganese-doped cesium lead-halide perovskite nanocrystals. Unexpectedly, we find an increase in the intrinsic excitonic radiative recombination rate upon doping, which is typically a challenging material property to tailor. Supported by ab initio calculations, we can attribute the enhanced emission rates to increased exciton localization through lattice periodicity breaking from Mn dopants, which increases exciton effective masses and overlap of electron and hole wavefunctions and thus the oscillator strength. Our report of a fundamental strategy for improving luminescence efficiencies in perovskite nanocrystals will be valuable for maximizing efficiencies in light-emitting applications.
Hybrid perovskites have emerged as exceptional semiconductors for optoelectronic applications. Here, we control the cation alloying to push optoelectronic performance through alteration of the charge carrier dynamics in mixed-halide perovskites. In contrast to single-halide perovskites, we find high luminescence yields for photo-excited carrier densities far below solar illumination conditions. Using time-resolved spectroscopy we show that the charge-carrier recombination regime changes from second to first order within the first tens of nanoseconds after excitation. Supported by microscale-mapping of the optical bandgap and elemental composition, electrically-gated transport measurements and first-principles calculations, we demonstrate that spatially-varying energetic disorder in the electronic states causes local charge accumulation, creating p- and n-type photo-doped regions, which unearths a strategy for efficient light emission at low charge-injection in solar cells and LEDs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.