We report three highly efficient multiresonance thermally activated delayed fluorescence blue-emitter host materials that include 5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene and tetraphenylsilyl groups. The new host materials doped with the conventional v-DABNA blue emitter exhibit a high PLQY greater than 0.82, a high horizontal orientation greater than 88%, and a short PL decay time of 0.96–1.93 μs. The device with TDBA-Si shows high EQE of 36.2/35.0/31.3% at maximum luminance/500 cd m−2/1,000 cd m−2. This high performance is attributed to fast energy transfer from the host to the dopant, which is enabled by the external heavy-atom effect of Si, increased spin–orbit coupling, inhibition of aggregation by the bulky tetraphenylsilyl groups, and fast RISC of the dopant. It can also be explained by a hot triplet excited-state contribution, high thermal stability, and high horizontal orientation. We achieved a high efficiency greater than 30% and a small roll-off value of 4.9% at 1,000 cd m−2 for the first time using the newly developed TDBA-Si host material. The presentation of OLED results incorporating different heteroatoms is also scheduled.
Perovskites is a very promising material that is being extensively studied at the bulk and nanosize scales because it has outstanding optical properties, including high quantum efficiency and narrow emission spectra. To realize a full-color display in the research field of perovskites or perovskite-structured quantum dots (PeQDs), the development of white-light-emitting devices that operate by emitting light of three primary colors (red, green, and blue) has emerged as an active research topic. In this presentation, we report for the first time three-color white-light emission with high brightness from white-emitting PeQD organic light-emitting diodes (WPeQD-OLEDs) fabricated using a PeQD material and organic emitters. The electroluminescence (EL) spectra of the WPeQD-OLEDs showed EL maximum peaks at 460, 527, and 640 nm; the CIE color coordinates of the emitted light were (0.33, 0.40). The EL results confirmed that the maximum luminance was 49,000 cd m−2 and the maximum luminance efficiency and power efficiency were 4.48 cd A−1 and 2.16 lm W−1 . Also, we achieved a new hybrid pink device of perovskite red QD (PRQD) and organic blue emitter (OBE) which have different emission mechanisms in bilayered LED devices. It has pink emission, CIE coordinate of (0.331, 0.204) which cannot be provided by a single emitter.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.