KEYWORDS: Light emitting diodes, 3D displays, Autostereoscopic displays, Monte Carlo methods, LED displays, Computer simulations, LED lighting, 3D vision
Stereo depth is the most important factor for the 3D experience when viewing an autostereoscopic display. In this paper, we investigate the influence of viewing distance and viewing angle on stereo depth. First, we build the ideal stereo depth model based on the physiological limitation. Second, we establish a wave aberration model based on diffraction theory. The simulation and experimental results agree with the theoretical analyses. The model is of significant importance for giving a guidance on display system designing.
KEYWORDS: 3D displays, Autostereoscopic displays, Lenticular lenses, Beam splitters, Ray tracing, Monte Carlo methods, Light, Diffraction, Beam analyzers, Computer simulations
The three-dimensional(3D) displays based on binocular parallax have drawn increasingly interests. The light splitting element, which presents separate images to the viewer’s left and right eyes, plays an important part in the auto-stereoscopic display. Lenticular lenses are widely used as the light splitting elements. However, the crosstalk resulted from the unsatisfied splitting may reduce the 3D experience.
It was determined that the most suitable cross sectional shape for lenticular lenses is elliptical. Firstly, the formula of the surface is derived based on the ellipse expression and the requirement of the 3D display system, that is y2+0.5651x2 − 303.4768=0. Secondly, one axial source and 4 off-axial sources placed at the heights of 2.5mm, 5mm, 7.5mm and 8mm are used to analyze the beam splitting quality of the cylindrical and elliptical lens element, respectively. The spot of elliptical lens is smaller which means a better beam splitting quality. Thirdly, Monte Carlo Non-Sequential Ray tracing algorithm is used to simulate the luminance distribution on the viewing plane, the narrower width of vertical stripes means that the aberration is suppressed. Finally, the shape of elliptical can reduce the processing difficulty with the 10μm minimum step width. In a word, the optimization of the surface has a significant effect on the improvement of stereoscopic depth and the reduction of ghost images.
Research on the characteristic of the autostereoscopic LED display (ALEDD) using DOEs sheet is of prime importance to the widely application of the (ALEDD). In this paper, the effects caused by the assembling errors between the LED display and DOEs sheet are theoretically and experimentally analyzed. The results show that, the tolerance assembling errors are | Δ z |≤ 1mm , and, Δθ Δθ ≤ 1°, respectively. This conclusion will benefit a lot in instructing the installation of the autostereoscopic three-dimensional LED display system to reduce the crosstalk and improve the quality of 3D perception.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.