Neural networks are massively parallel arrays of simple processing units that can be used for computationally complicated tasks such as image processing. This paper develops an efficient method for processing remote-sensing satellite data using complex valued artificial neurons as an approach to the problems associated with computer vision-region identification and classification-as they are applied to satellite data. Because of the amount of data to be processed and complexity of the tasks required, problems using ANNs arise, specifically, the very long training time required for large ANNs using conventional computers. These problems effectively prevent an average person from performing his own analysis. The solution presented here uses a recently developed complex valued artificial neuron model in this real-world problem. This model was then coded, run and verified on personal computers. Results show the CVN to be an accurate and computationally efficient model.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.