Label-free chemical contrast is highly desirable in biomedical imaging. Spontaneous
Raman microscopy provides specific vibrational signatures of chemical bonds, but is often
hindered by low sensitivity. Here we report a 3D multi-photon vibrational imaging
technique based on stimulated Raman scattering (SRS). The sensitivity of SRS is
significantly greater than that of spontaneous Raman scattering, and is further enhanced
by high-frequency (MHz) phase-sensitive detection. SRS microscopy has a major advantage
over previous coherent Raman techniques in that it offers
background-free and easily
interpretable chemical contrast. We show a variety of biomedical applications, such as
differentiating distributions of omega-3 fatty acids and saturated lipids in living cells,
imaging of brain and skin tissues based on intrinsic lipid contrast.
Photodynamic therapy (PDT) involves a combination of a lesion-localizing photosensitizer with light and has been established as a new modality for some medical indications. Much evidence has shown the correlation between subcellular localization of a photosensitizer with its photodynamic efficiency. However, the fluorescence of most photosensitizers in cells is weak and easily photobleached. We compare the effect of single-photon excitation (SPE) with that of two-photon excitation (TPE) on fluorescence detection of protoporphyrin IX (PpIX), a potent photosensitizer, in the PLC hepatoma cells in vitro. By using laser scanning confocal fluorescence microscopy, both fluorescence images and spectra of intracellular PpIX are studied with SPE of 405- and 488-nm lasers, and TPE of 800-nm femtosecond laser. The 405-nm laser is more efficient at exciting PpIX fluorescence than the 488-nm laser, but causes a considerable photobleaching of the PpIX fluorescence and induces weak autofluorescence signals of native flavins in the cells as well. The 800-nm TPE is found to significantly improve the quality of PpIX fluorescence images with negligible PpIX photobleaching and minimized endogenous autofluorescence, indicating the potential of 800-nm TPE for studying cellular localization of porphyrin photosensitizers for PDT.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.