We report on the potentiality of the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique for the deposition of
thin films of colloidal nanoparticles to be used for gas sensors based on electrical transduction mechanisms. The MAPLE
technique seems very promising, since it permits a good thickness control even on rough substrates, generally used to
enhance the active surface for gas adsorption.
TiO2 (with a capping layer of benzyl alcohol) and SnO2 (with a capping layer of trioctylphosphine) colloidal
nanoparticles were diluted in suitable solvents (0.2% concentration), frozen at liquid nitrogen temperature and ablated
with a ArF (λ=193 nm) or KrF (248 nm) excimer laser. The nanoparticle thin films were deposited on silica,
interdigitated alumina and <100> Si substrates and submitted to morphological (SEM-FEG), structural (XRD, FTIR),
optical (UV-Vis transmission) and electrical (sensing tests) characterizations.
A uniform distribution of TiO2 nanoparticles, with an average size of ~10 nm, was obtained on flat and rough substrates.
The deposited TiO2 nanoparticles preserved the anatase crystalline structure, as evidenced by the XRD spectra. FTIR
analysis showed that the SnO2 nanoparticles maintained the capping layer after the laser-assisted transfer process. This
protective layer was removed after annealing at 400 °C. The starting nanoparticle dimensions were preserved also in this
case. Electrical tests, performed on TiO2 nanoparticle films, in controlled atmosphere in presence of ethanol and acetone
vapors, evidenced a high value of the sensor response even at very low concentrations (20-200 ppm in dry air). In
contrast, in the case of SnO2 nanoparticle films, electrical tests to ethanol vapor presence showed poor gas sensing
properties probably due to the small nanoparticle sizes and interconnections.
We developed a novel method to detect the presence of unburned diesel fuel in used diesel fuel engine oil. The method is
based on the use of an array of different gas microsensors based on metal oxide thin films deposited by sol-gel technique
on Si substrates. The sensor array, exposed to the volatile chemical species of different diesel fuel engine oil samples
contaminated in different percentages by diesel fuel, resulted to be appreciable sensitive to them. Principal Component
Analysis (PCA) and Self-Organizing Map (SOM) applied to the sensor response data-set gave a first proof of the sensor
array ability to discriminate among the different diesel fuel diluted lubricating oils. Moreover, in order to get information
about the headspace composition of the diesel fuel-contaminated engine oils used for gas-sensing tests, we analyzed the
engine oil samples by Static Headspace Solid Phase Micro Extraction/Gas Chromatograph/Mass Spectrometer (SHS-SPME/
GC/MS).
Spin-coated layers of ZnPc and CuP have been used as chemically interacting materials for the detection of alcohols, amines, ketones, alkanes and pyridine for applications in food quality control. The UV-VIS variations obtained by the exposure of the sensing layers to the mentioned analytes in controlled atmosphere have been analyzed and compared with those deriving by a single thin film obtained by mixing the two metal complexes in an appropriate ratio. A multichannel monitoring of the main bands of the sensing layer due to the interaction with the analyte vapors became the basis to construct a set of independent sensors located on a single sensing element. The effects in the variation of the absorption bands of the blend system are compared with the variations in absorbance observed with the two sensing layers fabricated separately with each single compound. The interaction between the VOCs species and the heterogeneous sensing layer shows a different behavior in the responses respect to the results obtained with each single compound.
Sol-gel organic synthesis of SnO2 thin films from tin ethoxide precursor is reported here as a promising and cheap alternative of the 'classical' chemical and physical preparation methods of the SnO2 thin films, for gas sensing applications. A simple, integrated circuit compatible test structure, for rapid evaluation of the sensing properties of the SnO2 sol-gel derived thin films is described. The main features of our microstructure consists of a a heating resistor integrated on chip, made of highly boron doped silicon and a metallization system from Au/W deposited on a planarized chemically vapor deposited SiO2 layer. The SnO2 films have shown the well-known increase-maximum-decrease dependence of chemoresistance as a function of temperature, with a maximum at about 380 degrees C, when they are measured in clean, dry air. The sensitivity of SnO2 films to high concentration of H2 in air was studied within a quartz furnace, externally heated in the temperature range from 200 to 450 degrees C. The relative sensitivity is equal to 100 percent at temperatures as low as 200 degrees C, while its maximum value is anticipated to be above 450 degrees C. The CO sensing properties of SnO2 layers were evaluated as a function of input power applied on the integrated heating resistor. We have obtained relative sensitivities of 30 percent for 500 ppm CO concentration in dry air and an input power of 209 mW.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.