We present a review of the ongoing research activity surrounding the adaptive optics system at the Shane telescope (ShaneAO) particularly the R&D efforts on the technology and algorithms for that will advance AO into wider application for astronomy. We are pursuing the AO challenges for whole sky coverage diffraction-limited correction down to visible science wavelengths. This demands high-order wavefront correction and bright artificial laser beacons. We present recent advancements in the development of MEMS based AO correction, woofer-tweeter architecture, wind-predictive wavefront control algorithms, atmospheric characterization, and a pulsed fiber amplifier guide star laser tuned for optical pumping of the sodium layer. We present the latest on-sky results from the new AO system and present status and experimental plans for the optical pumping guide star laser.
Using pseudo-open loop phase maps, reconstructed from deformable mirror commands obtained from the Gemini Planet Imager Adaptive Optics telemetry, estimates are made for the temporal variation of the atmospheric turbulence at Cerro Pachón. The analysis was done by performing Zernike polynomial fits to the instantaneous phase maps to produce Zernike coefficient time series and their corresponding temporal power spectrums. The characteristics of these results were compared to the results obtained from simulated atmospheric turbulence produced by a Kolmogorov atmosphere simulation. A low-frequency variation in the Zernike coefficient time series is observed in the pseudo open-loop phase maps reconstructed from the GPI data, that is not present in the simulation. The effects of this are observed as differences in the relative scale of high and low frequency terms in the power spectral densities.
The advent of expensive, large-aperture telescopes and complex adaptive optics (AO) systems has strengthened the need for detailed simulation of such systems from the top of the atmosphere to control algorithms. The credibility of any simulation is underpinned by the quality of the atmosphere model used for introducing phase variations into the incident photons. Hitherto, simulations which incorporate wind layers have relied upon phase screen generation methods that tax the computation and memory capacities of the platforms on which they run. This places limits on parameters of a simulation, such as exposure time or resolution, thus compromising its utility. As aperture sizes and fields of view increase the problem will only get worse. We present an autoregressive method for evolving atmospheric phase that is efficient in its use of computation resources and allows for variability in the power contained in frozen flow or stochastic components of the atmosphere. Users have the flexibility of generating atmosphere datacubes in advance of runs where memory constraints allow to save on computation time or of computing the phase at each time step for long exposure times. Preliminary tests of model atmospheres generated using this method show power spectral density and rms phase in accordance with established metrics for Kolmogorov models.
We measure the long-term systematic component of the astrometric error in the GeMS MCAO system as a function of field radius and Ks magnitude. The experiment uses two epochs of observations of NGC 1851 separated by one month. The systematic component is estimated for each of three field of view cases (15'' radius, 30'' radius, and full field) and each of three distortion correction schemes: 8 DOF/chip + local distortion correction (LDC), 8 DOF/chip with no LDC, and 4 DOF/chip with no LDC. For bright, unsaturated stars with 13 < Ks < 16, the systematic component is < 0.2, 0.3, and 0.4 mas, respectively, for the 15'' radius, 30'' radius, and full field cases, provided that an 8 DOF/chip distortion correction with LDC (for the full-field case) is used to correct distortions. An 8 DOF/chip distortion-correction model always outperforms a 4 DOF/chip model, at all field positions and magnitudes and for all field-of-view cases, indicating the presence of high-order distortion changes. Given the order of the models needed to correct these distortions (~8 DOF/chip or 32 degrees of freedom total), it is expected that at least 25 stars per square arcminute would be needed to keep systematic errors at less than 0.3 milliarcseconds for multi-year programs. We also estimate the short-term astrometric precision of the newly upgraded Shane AO system with undithered M92 observations. Using a 6-parameter linear transformation to register images, the system delivers ~0.3 mas astrometric error over short-term observations of 2-3 minutes.
It is possible to create custom laser guidestar (LGS) asterisms from a single beam by using a deformable mirror to pattern the phase of the outgoing laser guidestar beam. This avoids the need for multiple laser launch assemblies, and in principle would allow one to position the multiple LGS spots in any desired arrangement around the science target, as well as dynamically rotate the LGS pattern on-sky and control the distribution of intensity in each spot. Simulations and laboratory experiments indicate that a PTT111 and PTT489 IrisAO MEMS deformable mirror and a Hamamatsu X8267 spatial light modulator may have applications for creating small LGS asterisms for biological imaging with adaptive optics. For astronomy applications, the phase values required to
produce the “3+1” laser guidestar asterism of Keck’s Next Generation AO system is also
investigated.
The Lick Observatory's Shane 3-meter telescope has been upgraded with a new infrared instrument (ShARCS - Shane Adaptive optics infraRed Camera and Spectrograph) and dual-deformable mirror adaptive optics (AO) system (ShaneAO). We present first-light measurements of imaging sensitivity in the Ks band. We compare mea- sured results to predicted signal-to-noise ratio and magnitude limits from modeling the emissivity and throughput of ShaneAO and ShARCS. The model was validated by comparing its results to the Keck telescope adaptive optics system model and then by estimating the sky background and limiting magnitudes for IRCAL, the pre- vious infra-red detector on the Shane telescope, and comparing to measured, published results. We predict that the ShaneAO system will measure lower sky backgrounds and achieve 20% higher throughput across the JHK bands despite having more optical surfaces than the current system. It will enable imaging of fainter objects (by 1-2 magnitudes) and will be faster to reach a fiducial signal-to-noise ratio by a factor of 10-13. We highlight the improvements in performance over the previous AO system and its camera, IRCAL.
A new high-order adaptive optics system is now being commissioned at the Lick Observatory Shane 3-meter telescope in California. This system uses a high return efficiency sodium beacon and a combination of low and high-order deformable mirrors to achieve diffraction-limited imaging over a wide spectrum of infrared science wavelengths covering 0.8 to 2.2 microns. We present the design performance goals and the first on-sky test results. We discuss several innovations that make this system a pathfinder for next generation AO systems. These include a unique woofer-tweeter control that provides full dynamic range correction from tip/tilt to 16 cycles, variable pupil sampling wavefront sensor, new enhanced silver coatings developed at UC Observatories that improve science and LGS throughput, and tight mechanical rigidity that enables a multi-hour diffraction-limited exposure in LGS mode for faint object spectroscopy science.
The identification and prediction of time-varying wavefront errors in adaptive optics (AO) systems promises fainter limiting
guide star magnitudes and improved temporal bandwidth errors. In a new UCSC-LLNL collaboration, we aim to demonstrate
the power of predictive Fourier controllers for AO in the laboratory and on-sky. We have used the Fourier Wind
Identification technique to measure wind velocities at several telescopes, and now have demonstrated the identification of
frozen flow turbulence with a translating phase screen on a laboratory test bench.
Here, we present identification of the wind direction and velocity using telemetry data from a laboratory testbed simulating
the ShaneAO system geometry. Our wind identification system uses a Fourier decomposition technique to identify
the correlated movement of the atmosphere from WFS telemetry data, which are then used to construct a Kalman filter for
real-time operation. We demonstrate the use of an LQG controller with the ShaneAO system architecture, and show that
the effects of frozen flow turbulence can be easily identified in laboratory telemetry. We describe the adaptations made
to the LQG controller to integrate it into the dual-DM architecture of the ShaneAO system, and demonstrate that these
modifications produce stable and well-understood AO correction in the laboratory.
We describe the design and first-light early science performance of the Shane Adaptive optics infraRed Camera- Spectrograph (ShARCS) on Lick Observatory’s 3-m Shane telescope. Designed to work with the new ShaneAO adaptive optics system, ShARCS is capable of high-efficiency, diffraction-limited imaging and low-dispersion grism spectroscopy in J, H, and K-bands. ShARCS uses a HAWAII-2RG infrared detector, giving high quantum efficiency (<80%) and Nyquist sampling the diffraction limit in all three wavelength bands. The ShARCS instrument is also equipped for linear polarimetry and is sensitive down to 650 nm to support future visible-light adaptive optics capability. We report on the early science data taken during commissioning.
We evaluate the performance of a woofer-tweeter controller architecture for the new 3-meter Shane Telescope (Lick Observatory) laser guidestar adaptive optics (AO) system. Low order, high stroke phase correction is performed using the normal modal basis set of the Alpao woofer deformable mirror (DM). Since the woofer and tweeter DMs share the same wavefront sensor, the projected woofer phase correction is offloaded from the high-order, low stroke phase aberrations corrected by the tweeter DM. This ensures the deformable mirrors complementarily correct the input phase disturbance and minimizes likelihood of the tweeter actuators saturating. Preliminary analysis of on-sky closed-loop deformable mirror telemetry data from currently operating AO systems at Mt. Hamilton, as well as statistically accurate Kolmogorov phase screens, indicate that correction of up to 34 woofer modes results in all tweeter actuators remaining within their stroke limit.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.