The 4-meter Multi-Object Spectroscopic Telescope (4MOST) instrument uses 2436 individually positioned optical fibres to couple the light of targets into its spectrographs. The Fibre Target Alignment (FTA) software controls all aspects of the 4MOST instrument that are involved to position the 2448 spines of the AESOP positioner to their target locations closer than 10µm RMS, within 90 seconds. The AESOP fibre positioner provides a HTML interface which is used by the FTA software to command spine movements. The metrology system consists of four cameras, and a sophisticated software package to measure the location of fibres, which are moved by the AESOP spines. Spines reach their target typically after six to eight iterative movements, which are interlaced with metrology frames. The metrology software is capable of taking 4 images simultaneously, and reconstructing fibre positions to within 3μm RMS within five seconds. We present the FTA control software architecture, the interaction of sub-components and the different operation modes of the system. Especially the concurrent and simultaneous control of four metrology camera processes. Due to the complexity of the system, comprehensive debugging and visualization tools have been developed which allow a detailed understanding and interaction of the entire system. The graphical tool provides feedback for each individual camera stream and their combined result. It provides statistics and tools to manipulate individual spines, especially to recover them in case of entanglement. To develop the control software, a full end-to-end simulator has been created, which closes the loop between metrology image simulation, simulated fibre positioning and all control aspects in between. The metrology system uses the current spine position as presented by the AESOP positioner to render metrology camera images. Analysis and downstream computation is identical to the live software. When commanded to move spines, The AESOP simulator executes the identical steps to move spines, except sending electrical signals. After which it returns the expected spine positions after their move, which is taken as input for the next FTA iteration.
4MOST is a new high-multiplex, wide-field spectroscopic survey facility under construction for ESO's 4m-VISTA telescope at Paranal, Chile. Its key specifications are: a large field of view of 4.4 square degrees, a high multiplex fibre positioner based on the tilting spine principle positioning 2436 science fibres, 1624 fibres going to two low-resolution spectrographs (R = λ/Δλ ~ 6500), and 812 fibres transferring light to the high-resolution spectrograph (R ~ 20,000). The instrument is entirely completed and is being shipped to Paranal Observatory, Chile in the first few months of 2024. Commissioning will take place summer 2024 with full operations expected to start early 2025. An overview will be given of instrument capabilities, the planned, and the unique operational scheme of 4MOST.
4MOST, the 4m Multi Object Spectroscopic Telescope, is an upcoming optical, fibre-fed, MOS facility for the VISTA telescope at ESO's Paranal Observatory in Chile. Its main science drivers are in the fields of galactic archeology, high-energy physics, galaxy evolution and cosmology. The 4MOST consortium consists of several institutes in Europe and Australia under leadership of the Leibniz-Institut für Astrophysik Potsdam (AIP). 4MOST is currently in its Assembly, Integration and Tests Phase with an expected start of science operations in 2025. The design of 4MOST features 2436 fibres split into two low-resolution spectrographs (1624 fibres, three arms, 370-950 nm, R > 4000) and one high-resolution spectrograph (812 fibres, three arms, ~44-69 nm coverage each, R > 18000). The fibre positioner covers a hexagonal field of view of ~4.1 deg2. The fibers are 85μm core with an output beam at f/3. CRAL has the full responsibility of the two Low Resolution Spectrographs. Each of them is composed of a 200mm beam for an off-axis collimator associated to its Schmidt corrector, three “color” arms hosting f/1.73 cameras with standard 6k x 6k 15μm pixel CCD detectors. The local acceptance reviews at CRAL for the both 4MOST Low Resolution Spectrographs were successfully passed respectively in December 2021 and October 2022. In 2022, two SPIE papers described the process performed at CRAL from the integration and alignment of the sub-assemblies up to the procedures developed to test the spectrograph and demonstrate its compliance with the requirements. Then the two LRS were partially disassembled and sent to Potsdam. They have now been fully integrated, aligned and tested at Potsdam by the CRAL team. The integration of both LRS with the others sub-systems in order to validate the global end-to-end tests is foreseen in 2024 and an installation at VISTA telescope is expected in 2025. This paper describes the assembly, integration and performances achieved at Postdam for the both Low Resolution Spectrographs. Special emphasis is put on the update of procedures and components to improve performances and meet the top-level requirements.
4MOST is a versatile spectroscopic facility soon to be installed on the ESO VISTA Telescope at Paranal. Prior to shipment to Chile, our team is conducting a comprehensive characterization of the instrument in a controlled laboratory setting. This preparatory phase is crucial for ensuring the fulfilment of both technical specifications and some key user requirements. The goal of this verification campaign is to obtain characterization data which will benchmark the performance of the spectrographs and the calibration unit against established metrics. The data primarily tests the spectral performance of the three spectrographs, the stability of the system, including the calibration unit, as well as the fiber throughput, which are pivotal for the success of 4MOST’s ambitious science goals. Additionally, the verification contains a selection of user requirements, ensuring the instrument’s readiness for the diverse scientific objectives it aims to enable. The results from these tests inform the observational strategy for future normal science operations. In this paper we outline the undertaken preparatory work, the applied testing procedures, and the anticipated implications of these tests, and their results, in the context of the final verification at the telescope, commissioning and normal science operations. This initial test phase marks a critical juncture in the 4MOST project timeline, setting the stage for a successful commissioning.
KEYWORDS: Lenses, Telescopes, Astronomical imaging, Optical alignment, Spectroscopy, Analog to digital converters, Field spectroscopy, Tolerancing, Equipment, Assembly tolerances
The 4-metre multi-object spectroscopic telescope (4MOST) is a fiber-fed multi-object spectrograph for the VISTA telescope at the European Southern Observatory (ESO) Paranal Observatory in Chile. The goal of the 4MOST project is to create a general purpose and highly efficient spectroscopic survey facility for astronomers in the 4MOST consortium and the ESO community. The instrument itself will record 2436 simultaneous spectra over a ∼4.2 square deg field of view and consists of an optical wide-field corrector (WFC), a fiber positioner system based on a tilting spine design, and three spectrographs giving both high and low spectral dispersion. The WFC comprises of six lenses grouped into four elements, two of which are cemented doublets that act as an atmospheric dispersion corrector. The first lens element is 0.9 m in diameter while the diameter of the other elements is 0.65 m. For the instrument to meet its science goals, each lens was aligned to be well within ∼100 μm—a major challenge. This was achieved using contact metrology methods supplemented by pencil beam laser probes. In particular, an off-axis laser beam system has been implemented to test the optics’ alignment before and after shipment. This work details the alignment and assembly methods and presents the latest results on the achieved lens positioning and projected performance of the WFC.
The 4-meter Multi-Object Spectroscopic Telescope (4MOST) instrument uses 2436 individually positioned optical fibres to couple the light of targets into its spectrographs. The AESOP fibre positioner is mounted at the Cassegrain focus of the VISTA telescope, which houses the fibres in a hexagon-like structure with a diameter of 535 mm that covers a 2.5 deg diameter field of view on the sky. Fibres are positioned relative to fixed fiducial fibres. The metrology system determines the position of the fibres on the focal surface of the telescope relative to the fiducial fibres. The location of the fibres needs to be measured to better than 3 micron RMS in the focal surface, approximately 0.05 arc seconds on sky. Four imaging cameras are mounted on the VISTA spider vanes that look through the entire optical train, including primary and secondary mirror as well as the wide field corrector (WFC) / atmospheric dispersion compensator (ADC) unit. We recreated the setup for the metrology system in the lab with similar dynamic behavior but different optical design due to the lack of the VISTA telescope. We demonstrate the metrology system measurement accuracy in lab conditions on the full scale test stand. We also show how we measure distortions induced by optical path and the calibration procedure as a precursor for commissioning on the telescope. In particular, we present a method how to measure the surface shape of any optical surface with approx. 10 nm accuracy over its entire optically active surface.
The Calibration Unit for 4MOST is providing hundreds of highly stable sharp spectral features with high power and mimicking the sky over the focal plane. The heart of the system is a combination of a bright broadband lamp and a Fabry-Perot etalon that provides a regular comb of spectral lines. 120 integrating spheres are distributed in 4 Light sabre linear arrays. These Light sabres are attached to the telescope spider struts and provide unvignetted illumination to the telescope focal plane. We describe the final design, the alignment, and the results of the testing.
The 4-metre Multi-Object Spectroscopic Telescope (4MOST) is a fibre-fed multi-object spectrograph for the VISTA telescope at the ESO Paranal Observatory in Chile. The goal of the 4MOST project is to create a general-purpose and highly efficient spectroscopic survey facility for astronomers in the 4MOST consortium and the ESO community. The instrument itself will record 2436 simultaneous spectra over a ∼4.2 square degree field of view and consists of an optical Wide-Field Corrector (WFC), a fibre positioner system based on a tilting spine design, and three spectrographs giving both high and low spectral dispersion. The WFC comprises of 6 lenses grouped into 4 elements, 2 of which are cemented doublets that act as an atmospheric dispersion corrector (ADC). The first lens element is 0.9m in diameter whilst the diameter of the other elements is 0.65m. For the instrument to meet its science goals, each lens needs to be aligned to ∼50µm – a major challenge. This is achieved using contact metrology methods supplemented by pencil beam laser probes. In particular, a novel off-axis laser beam system has been implemented to test the optics’ alignment before and after shipment. This paper details the alignment and assembly methods and presents the latest results on the achieved lens positioning and projected performance of the WFC
4MOST is a new high-multiplex, wide-field spectroscopic survey facility under construction for ESO's 4m-VISTA telescope at Paranal, Chile. Its key specifications are: a large field of view of 4.4 square degrees, a high multiplex fibre positioner based on the tilting spine principle that positions 2436 science fibres in the focal surface of which 1624 fibres go to two low-resolution optical spectrographs (R = λ/Δλ ~ 6500) and 812 fibres transfer light to the high-resolution optical spectrograph (R ~ 20,000). Currently, almost all subsystems are completed and full testing in Europe will be finished in spring 2023, after which 4MOST will be shipped to Chile. An overview is given of instrument construction and capabilities, the planned science of the consortium and the recently selected community programmes, and the unique operational scheme of 4MOST.
The implementation of the 4MOST Facility at the ESO Paranal 4-meter VISTA wide-field telescope requires a substantial modification of the telescope. Since the current acquisition and guiding (A&G) and wavefront sensing optical systems (WFS) are embedded in VIRCAM and will be removed with it, replacements had to be provided. Although the A&G and WFS cameras will serve different purposes, they share common requirements. Among the shared requirements, a few are particularly challenging. For example, the environmental conditions the cameras will be exposed to require them to have an IP54 protection and due to their location, they cannot dissipate heat to the ambient air. To ensure optical alignment, the cameras must have very accurate housing and mechanical interfaces. In addition, both have to be integrated into an existing telescope control environment, with all that this entails in terms of service interfaces and protocols that can be used (e.g. GigE Vision), as well as operational requirements that must be met. After considering the specific performance requirements for the A&G cameras, the WFS detectors and the secondary guider sensor, a decision was made to use the same custom designed CCD camera model for all of them. These cameras are provided by Spectral Instruments. In this work we present the requirements for such cameras, their opto-mechanical design and the first results of their verification campaign, both at Spectral Instrument and AIP premises.
This paper proposes the usage of IBM Rational DOORS for the planning, controlling and supporting the verification of a system. This includes defining the verification methods & stages for technical requirements, defining the verification activities, establishing links between technical requirements and verification activities, defining the scope and success criteria of tests, monitoring the progress of the verification campaigns and finally the generation of the compliance matrix, all within a single tool. We illustrate the usage of this tool over the entire lifecycle of two recent projects (NAOMI, 4MOST) and give an outlook of its application to the verification of the Extremely Large Telescope (ELT).
A status overview of 4MOST is presented, a new high-multiplex, wide-field spectroscopic survey facility under construction for ESO's VISTA telescope at Paranal. Its key specifications are: a large field of view of 4.4 deg2 and a high multiplex capability, with 1624 fibres feeding two low-resolution spectrographs (R = λ/Δλ ~ 6500), and 812 fibres transferring light to the high-resolution spectrograph (R ~ 20 000). The 4MOST system integration has commenced and the selection process for ESO community survey programmes has been started. This overview presents the expected performance of the instrument, the science the consortium expects to carry out, and the unique operational scheme of 4MOST.
The 4-metre Multi-Object Spectroscopic Telescope (4MOST) is a new high-multiplex, wide-field spectroscopic survey facility under development for the Visible and Infrared Survey Telescope for Astronomy (VISTA) at Paranal. Its key specifications are: a large field of view (FoV) of 4.4 square degrees and a high multiplex capability, with 1624 fibres feeding two low-resolution spectrographs (R =6500), and 812 fibres transferring light to the high-resolution spectrograph (R ≈ 20000). For the end-to-end characterization of the 4MOST facility, we analyze the impact of the atmosphere at Paranal, VISTA telescope, wide field corrector, atmospheric dispersion compensator, tilting spine positioner, fibre system, spectrographs and detector systems. We present an exhaustive analysis of the most influential characteristics on the transmission efficiency for a 4MOST observation. Many environmental, telescope, and instrumental effects can be characterized in isolation, such as glass transmission. But there are also many effects that are caused by a combination of multiple components. For example, the residual atmospheric dispersion in combination with fibre positioning errors; or the fibre field position in combination with fibre tilt angle as well as the fibre focus position. To capture this complexity, we present a coherent quantitative assessment of each significant individual effect, as well as a relevant selection of effect combinations. To quantify the impact on the survey nature of the 4MOST instrument, we also introduce parts of the optical performance simulator TOAD, which was used to compute the impact each effect.
4MOST, the 4m Multi Object Spectroscopic Telescope, is an upcoming optical, fibre-fed, MOS facility for the VISTA telescope at ESO's Paranal Observatory in Chile. Its main science drivers are in the fields of galactic archeology, highenergy physics, galaxy evolution and cosmology. The preliminary design of 4MOST features 2436 fibres split into lowresolution (1624 fibres, 370-950 nm, R < 4000) and high-resolution spectrographs (812 fibres, three arms, ~44-69 nm coverage each, R < 18000) with a fibre positioner and covering an hexagonal field of view of ~4.1 deg2. The 4MOST consortium consists of several institutes in Europe and Australia under leadership of the Leibniz-Institut für Astrophysik Potsdam (AIP). 4MOST is currently in its Final Design Phase with an expected start of science operations in 2022. In this paper, the final optomechanical design and performances of 4MOST Low Resolution Spectrograph will be presented. It has been designed by CRAL for 4MOST FDR held in May, 2018. Special emphasis will be put on the technical requirements of individual optics and the mechanical design with its associated FEA.
A novel concept for the calibration of multi object fiber-fed spectrographs is described for the 4MOST instrument. The 4MOST facility is foreseen to start science operations in 2022 at the ESO VISTA telescope. The calibration system provides intensity, wavelength and resolution calibrations for the 4MOST spectrographs. The heart of the system is a combination of a bright broad band lamp and a Fabry-Perot etalon. The lamp is able to provide sufficient flux to illuminate the VISTA focal plane and the Fabry-Perot etalon provides a regular comb of spectral lines. The Fabry-Perot etalon can be moved in and out of the optical beam to choose between intensity and spectral calibrations. A fiber bundle of 156 fibers is guided to the VISTA spider arms where each fiber is connected to a small integrating sphere. The integrating spheres are attached to the bottom side of the four VISTA telescope spider struts and provide unvignetted illumination of the telescope. The exit port of the integrating spheres is projected on the VISTA focal plane with a small collimator lens. The integrating spheres assure a uniform illumination of the focal plane and are insensitive to FRD effects of the input fibers due to motion and stress during telescope movements. The calibration system illumination only originates from the telescope spiders and therefore the telescope pupil is not fully filled. The calibration system uses the azimuthal scrambling properties of the fibers that connect the telescope focal plane and the spectrometers to completely fill the spectrograph pupil.
The 4-metre Multi-Object Spectroscopic Telescope (4MOST) instrument uses 2436 individually positioned optical fibres to couple the light of targets into its spectrographs. The metrology system determines the position of the back-illuminated fibres on the focal surface of the telescope. It consists of 4 identical cameras that are mounted on the spider vanes of the secondary mirror of the VISTA telescope and look through the entire optical train, including M1, M2 and the WFC/ADC unit. Here, we present an exhaustive study on the expected centroiding errors, including but not limited to lens fabrication errors, seeing, mirror distortions and parallax effects.
The 4-metre Multi-Object Spectroscopic Telescope (4MOST) instrument uses 2436 individually positioned optical fibres to couple the light of targets into its spectrographs. TOAD, the "Top Of the Atmosphere to Detector" simulator, is a primary engineering tool that accompanies the development of the 4MOST instrument. The tool provides a detailed, end-to-end performance model both in terms of throughput and image quality for 4MOST. Its results are used for system performance analysis, data reduction pipeline development and to generate input data for other simulation tools of the project.
We present an overview and status update of the 4MOST project at the Final Design Review. 4MOST is a major new wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope at the Paranal Observatory of ESO. Starting in 2022, 4MOST will deploy 2436 optical fibres in a 4.1 square degree field-of-view using a fibre positioner based on the tilting spine principle. The fibres will feed one high-resolution (R~20,000) and two low-resolution (R~5000) spectrographs that all have fixed configuration, 3-channel designs with identical 6k x 6k CCD detectors. Updated performance estimates will be presented based on components already manufactured and pre-production prototypes of critical subsystems.
The 4MOST science goals are mostly driven by a number of large area, space-based observatories of prime European interest: Gaia and PLATO (Galactic Archeology and Stellar Physics), eROSITA (High-Energy Sky), and Euclid (Cosmology and Galaxy Evolution). Science cases based on these observatories, along with wide-area ground-based facilities such as LSST, VISTA and VST drive the ten Consortium Surveys covering a large fraction of the Southern sky, with bright time mostly devoted to the Milky Way disk and bulge areas and the Magellanic Clouds, and the dark/gray time largely devoted to extra-galactic targets. In addition there will be a significant fraction of the fibre-hours devoted to Community Surveys, making 4MOST a true general-purpose survey facility, capable of delivering spectra of samples of objects that are spread over a large fraction of the sky.
The 4MOST Facility Simulator was created to show the feasibility of the innovative operations scheme of 4MOST with all surveys operating in parallel. The simulator uses the mock catalogues created by the science teams, simulates the spectral throughput and detection of the objects, assigns the fibres at each telescope pointing, creates pointing distributions across the sky and simulates a 5-year survey (including overhead, calibration and weather losses), and finally does data quality analyses and computes the science Figure-of-Merits to assess the quality of science produced. The simulations prove the full feasibility of running different surveys in parallel.
With more than 200 scientists and engineers involved, the design and manufacture of the 4MOST instrument, a secondgeneration spectroscopic instrument built for ESO's 4.1-metre VISTA telescope, is a challenge requiring the implementation of an efficient quality assurance strategy during each project phase (i.e., design, manufacture, test, installation, and operation), and including the maintenance. This paper introduces the 4MOST product assurance approach used by the project to make sure that 4MOST will comply with all necessary quality and safety requirements over the whole instrument’s lifetime of 15 years. For quality assurance, the guiding principles are mainly given by the ISO 10007:2017 and ISO 9001:2015 quality management standards. Related to safety, 4MOST design and manufacture complies not only with the essential safety requirements from the European Union New Approach Directives (CE Marking Directives), but also with the additional requirements coming from the ESO Safety Policy, issued by the ESO Management for ESO-wide application. The implementation of the 4MOST project’s Quality Assurance and Configuration Management is described in detail in the paper.
The 4-meter Multi-Object Spectroscopic Telescope (4MOST) is a wide-field, high-multiplex spectroscopic survey facility under development for the Visible and Infrared Survey Telescope for Astronomy (VISTA) 4 meter telescope of the European Southern Observatory (ESO) at Cerro Paranal. The objective of 4MOST is to enable the simultaneous spectroscopy of a significant number of targets within a 2.5° diameter field of view, to allow high-efficiency all-sky spectroscopic surveys. A wide field corrector (WFC) is needed to couple targets across the 2.5° field diameter with the exit pupil concentric with the spherical focal surface where ~2400 fibres are configured by a fibre positioner (AESOP). For optimal fibre optic coupling and active optics wavefront sensing the WFC will correct optical aberrations of the primary (M1) and secondary (M2) VISTA optics across the full field of view and provide a well-defined and stable focal surface to which the acquisition/guiding sensors, wavefront sensors, and fibre positioner are interfaced. It will also compensate for the effects of atmospheric dispersion, allowing good chromatic coupling of stellar images with the fibre apertures over a wide range of telescope zenith angles (ZD). The fibres feed three spectrographs; two thirds of the fibres will feed two low resolution spectrographs and the remaining 812 fibres will feed a high-resolution spectrograph. The three spectrographs are fixed-configuration with three channels each. We present the 4MOST optical system together with optical simulation of subsystems.
The 4MOST Facility is a high-multiplex, wide-field, brief-fed spectrograph system for the ESO VISTA telescope. It aims to create a world-class spectroscopic survey facility unique in its combination of wide-field multiplex, spectral resolution, spectral coverage, and sensitivity. At the end of 2014, after a successful concept optimization design phase, 4MOST entered into its Preliminary Design Phase. Here we present the process and tools adopted during the Preliminary Design Phase to define the subsystems specifications, coordinate the interface control documents and draft the system verification procedures.
We present an overview of the 4MOST project at the Preliminary Design Review. 4MOST is a major new wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of ESO. 4MOST has a broad range of science goals ranging from Galactic Archaeology and stellar physics to the high-energy physics, galaxy evolution, and cosmology. Starting in 2021, 4MOST will deploy 2436 fibres in a 4.1 square degree field-of-view using a positioner based on the tilting spine principle. The fibres will feed one high-resolution (R~20,000) and two medium resolution (R~5000) spectrographs with fixed 3-channel designs and identical 6k x 6k CCD detectors. 4MOST will have a unique operations concept in which 5-year public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure. The 4MOST Facility Simulator (4FS) was developed to demonstrate the feasibility of this observing concept, showing that we can expect to observe more than 25 million objects in each 5-year survey period and will eventually be used to plan and conduct the actual survey.
4MOST, the 4m Multi Object Spectroscopic Telescope, is an upcoming optical, fibre-fed, MOS facility for the VISTA telescope at ESO's Paranal Observatory in Chile. Its main science drivers are in the fields of galactic archeology, highenergy physics, galaxy evolution and cosmology. The preliminary design of 4MOST features 2436 fibres split into lowresolution (1624 fibres, 370-950 nm, R > 4000) and high-resolution spectrographs (812 fibres, three arms, ~44-69 nm coverage each, R >18000) with a fibre positioner and covering an hexagonal field of view of ~4.1 deg2. The 4MOST consortium consists of several institutes in Europe and Australia under leadership of the Leibniz-Institut für Astrophysik, Potsdam (AIP). 4MOST is currently in its Preliminary Design Phase with an expected start of science operations in 2021. Two third of fibres go to two Low Resolution Spectrographs with three channels per spectrograph. Each low resolution spectrograph is composed of 812 scientific and 10 calibration fibres using 85μm core fibres at f/3, a 200mm beam for an off-axis collimator associated to its Schmidt corrector, 3 arms with f/1.73 cameras and standard 6k x 6k 15μm pixel detectors. CRAL has the responsibility of the Low Resolution Spectrographs. In this paper, the optical design and performances of 4MOST Low Resolution Spectrograph designed for 4MOST PDR in June, 2016 will be presented. Special emphasis will be put on the Low Resolution Spectrograph system budget and performance analysis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.