KEYWORDS: Cameras, Signal processing, Video processing, Electron multiplying charge coupled devices, Video, Sensors, Manufacturing, Digital signal processing, Aerospace engineering, Imaging systems
Low-light-level video cameras have benefited from rapid advances in digital technology during the past two decades. In legacy cameras, the video signal was processed using analog electronics which made real-time, nonlinear processing of the video signal very difficult. In state-of-the-art cameras, the analog signal is digitized directly from the sensor and processed entirely in the digital domain, enabling the application of advanced processing techniques to the video signal in real time. In fact, all aspects of modern low-light television cameras are controlled via digital technology, resulting in various enhancements that surpass analog electronics.
In addition to video processing, large-scale digital integration in these low-light level cameras enables precise control of the image intensifier and image sensor, facilitating large inter-scene dynamic range capability, extended intra-scene dynamic range and blooming control. Digital video processing and digital camera control are used to provide improved system-level performance, including nearly perfect pixel response uniformity, correction of blemishes, and electronic boresight. Compact digital electronics also enable comprehensive camera built-in-test (BIT) capability which provides coverage for the entire camera--from photons into the sensor to the processed video signal going out the connector.
Individuals involved in the procurement of present and future low-light-level cameras need to understand these advanced camera capabilities in order to write accurate specifications for their advanced video system requirements. This paper provides an overview of these modern video system capabilities along with example specification text.
KEYWORDS: Fiber optic illuminators, Cameras, Sensors, Imaging systems, Aerospace engineering, Real time imaging, Diodes, Laser video displays, Video, Laser development
This paper discusses the development history of real-time imaging active gated TV sensors from 1970 to present at Ball Aerospace and Technologies Corp. A number of AGTV systems are covered including: Video Imaging Detection and Ranging which was developed for hydrofoils in Southeast Asia, AC- 130U gunship, Airborne Laser-Based Enhanced Detection and Observation System search and rescue system for the Canadian Government, and several long-range surveillance systems. Technology developments related to sensor and illuminator over the past 3 decades are also discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.