The warm calibration unit (WCU) is one of the subsystems of the future METIS instrument on the Extremely Large Telescope (ELT). Operating at room temperature, the WCU is mounted above the main cryostat of METIS. It will be employed as a calibration reference for science observations, as well as for verification and alignment purposes during the AIT phase. The WCU is designed and constructed at the University of Cologne, one of the partner in the METIS consortium. WCU recently went through a successful Optics Long Lead Items Review by ESO. Now, the WCU is entering the last phase of the project, the Final Design Review (FDR). In this paper, we present the current status of the WCU design and summarize the mechanical and system engineering work. We describe the design of the hexapod formed by six manually adjustable links and its interfaces with the METIS cryostat together with the CFRP-based optical bench and Invar-based optical mounts. Lab prototyping results of one actuator under a nominal load of 5 kN confirms the achievable high linear resolution (20 µm). We present the status of the WCU laser cabinet. We discuss the lastest progress in the laboratory testing of some WCU functionalities, such as the fibre-fed monochromatic sources for the spectral calibration of the LM-Spectrograph of METIS, and the spatial calibration sources using the integrating sphere. We detail the activities foreseen until FDR together with the preparation of the sub-system MAIT work.
METIS, the mid-infrared imager and spectrograph for the wavelength range 2.9 -13.5 µm (astronomical L-, MN- band), will be one of the three science instruments at the Extremely Large Telescope (ELT). It will provide diffraction-limited imaging, coronagraphy, high-resolution integral field spectroscopy, and low and medium resolution slit spectroscopy. Within the international METIS consortium, the University of Cologne is responsible for the design, manufacturing, integration, and qualification of the Warm Calibration Unit (WCU) of the instrument. In this contribution, we present the current status of the optical design and principle of optical operation of the WCU. The main train of the WCU optics is based on a modified F/17.75 Offner relay, with the optical output parameters matching the plate scale, F-number, as well as the exit-pupil position and size of that of the ELT. We discuss the optical design, and tolerance analysis of the WCU relay optics as part of the Optics FDR review by ESO. In addition, we present the concept and design of the Invar mechanical mounts for the WCU Zerodur mirrors, which are expected to undergo thermal and mechanical stresses. Finally, we present the optical design and analysis of the visible channel of the WCU that is aimed at alignment verification, as well as visualization of the METIS focal and pupil planes.
We report the ultrafast laser inscription (ULI) of a 2-telescope integrated optic (IO) beam combiner for K-band interferometry in commercial Infrasil glass. The ULI setup used for this work is based on a 1030 nm femtosecond laser which is paired with a spatial-light-modulator (SLM). The SLM controls the numerical aperture of the focused beam used to write waveguides in the substrate. The optimum ULI parameters were found to inscribe straight single-mode waveguides exhibiting an insertion loss of 1.1 ± 0.1 dB for a 17 mm long chip over the entire K-band. To develop optimal directional couplers, we focused our efforts on investigating the effect of varying the core-to-core separation and the effect of detuning the waveguide parameters in the coupler. By doing so, we have identified fabrication parameters that are suitable for the fabrication of a beam combiner integrating an achromatic 3 dB directional coupler and two photometric taps with a splitting ratio of 80:20. These results demonstrate the capability of the ULI fabrication technique to inscribe efficient achromatic directional couplers in the K-band range. A final fabrication step will involve simple assembly of the beam combiner with input/output fibers in preparation for on-sky testing at the CHARA array planned for July 2022.
We recently performed tests of the discrete beam combiner (DBC) through an on-sky experiment using a 4-input pupil remappers-based integrated optics device. Here, we report on the lessons learned, as well as visibilities and closure phase results for our stellar target, Vega. Through complementary simulations, we analyze how the residual phase errors, input power imbalance at the waveguides, slow environmental changes, and different photon levels affect the performance of the DBC. This is an important aspect to improve future on-sky calibration strategies for this type of beam combiner, in particular when combining a large number of apertures.
The warm calibration unit (WCU) is one subsystem of the future METIS instrument on the European Extremely Large Telescope (E-ELT). Operating at daytime temperature, the WCU is mounted above the main cryostat of METIS and will be employed as calibration reference for science observations, as well as for verification and alignment purposes during the AIT phase. The WCU is designed and constructed at the University of Cologne, partner in the METIS consortium. The WCU, together with the full METIS instrument, went recently through a successful preliminary design review (PDR) phase at ESO and is entering now the Phase C of the project. In this paper, we present the current status of the WCU and summarize the mostly mechanical and optical engineering work. We adopted a hexapod unit to interface with the METIS cryostat and a CFRP-based optical bench to optimally cope with alignment flexure. We develop the case for fiber-fed laser sources feeding the integrating sphere for spectral calibration of the LM-Spectrograph of METIS. We detail the activity foreseen for Phase C including the optical tolerances analysis, the eigenfrequency and earthquake analysis and a preparation of the sub-system MAIT work, finishing the paper with a short overview of the WCU future plans.
In long-baseline interferometry, over the last few decades integrated optics beam combiners have become at- tractive technological solutions for new-generation instruments operating at infrared wavelengths. We have investigated different architectures of discrete beam combiners (DBC), which are 2D lattice arrangement of channel waveguides that can be fabricated by exploiting the 3D capability of the ultrafast laser inscription (ULI) fabrication techniques. Here, we present the first interferometric on-sky results of an integrated optics beam combiner based on a coherent pupil remapper and 4 input/23 output zig-zag based DBC, both written monolith- ically in a single borosilicate glass. We show the preliminary results of visibility amplitudes and closure phases obtained from the Vega star by using the previously calibrated transfer matrix of the device.
The project NAIR "Novel Astronomical Instrumentation based on photonic light Reformating" is a DFG-funded collaboration to exploit the recognized potential of photonics solutions for a radically new approach to astronomical instrumentation for optical/infrared high precision spectroscopy and high angular resolution imaging. We present a project update, with the developments in our ULI waveguides and 3D printed structures for astronomical instrumentation and on sky testing results obtained at the WHT, Subaru (SCExAO) and LBT. This shows the NAIR project is helping to lead to important technological breakthroughs facilitating uniquely functionality and technical solutions for the next generation of instrumentation.
KEYWORDS: Interferometry, Mid-IR, Integrated optics, Nulling interferometry, Data processing, New and emerging technologies, Space operations, Exoplanets, Manufacturing, Chalcogenide glass
Single-mode integrated optics is an increasingly employed technology in interferometric instruments to reach high-accuracy visibility and closure phases measurements. Here, we address the progress achieved in the area of mid-infrared integrated optics beam combiners beyond 2.5 µm fabricated in MIR chalcogenide glasses by ultrafast laser inscription. Thanks to the synergistic cooperation between the Universities of Cologne and Macquarie, we fabricated optimized asymmetric and multimode interference beam combiners and tested them around 4 µm. In contrast to our earlier works, we also focused on the high-contrast capabilities of these devices and measured levels of null depth. This may become relevant for future projects such as Hi5/VLTI or the space mission LIFE.
We report the ultrafast laser inscription (ULI) and characterization of 3 dB directional achromatic couplers for K-band between 2 and 2.4 μm. The couplers were fabricated in commercial Infrasil glass using 1030 nm femtosecond laser pulses. Straight waveguides inscribed using optimal fabrication parameters exhibit an average propagation loss of ∼1.21 dB over full range of K-band with a single-mode behavior for a length of 17 mm. Directional couplers with different interaction lengths and waveguide widths were fabricated and characterized. We demonstrate that 3 dB achromatic directional couplers for K-band can be fabricated using ULI. These results show that ULI can fabricate highquality couplers for future applications in astronomical interferometry. Our eventual aim is to develop a two-telescope K-band integrated optical beam combiner to replace JouFLU at CHARA.
Stellar interferometry performed in integrated photonic devices allows to increase the angular resolution of a ground-based telescope. Here we present the fabrication and characterization of a low-loss polarization insensitive photonic circuit for astrophotonics, whose geometry was engineered to combine interferometrically up to eight input beams. The employed fabrication technique consisted in the femtosecond laser micromachining followed by a thermal annealing to reduce the birefringence of the waveguides. The fabricated device was characterized to validate its functioning in terms of polarization insensitivity, good transmission and proper beam combination, thus benchmarking its suitability with real on-sky observations.
Astrophotonics is an emerging tool for increasing the angular resolution in ground-based sky observations. Due to the unpolarized nature of celestial light, it is necessary to operate with fully polarization insensitive integrated devices. In this respect, here we show that a thermal annealing after the femtosecond laser writing of waveguides reduces their birefringence of more than order of magnitude, providing integrated circuits whose behaviour is insensitive to the polarization of the input light. As a validation of this technique, we present the successful fabrication of a low-loss integrated device for performing stellar interferometry of up to 8 input beams.
We will show the first results for a pupil remapping device with an integrated optics discrete beam combiner. Our expected monochromatic visibility functions are in good agreement with simulation and experiment. The device will be used for our upcoming on-sky tests at 4-m Willian-Herschel Telescope (WHT) in canary islands.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.